【題目】如圖,在正方形ABCD和正方形DEFG中,點GCD上,DE=2,將正方形DEFG繞點D順時針旋轉(zhuǎn)60°,得到正方形DEFG′,此時點G′在AC上,連接CE′,則CE′+CG′=(  )

A. B. C. D.

【答案】A

【解析】試題解析:作GICDI,GRBCR,EHBCBC的延長線于H.連接RF.則四邊形RCIG是正方形.

∵∠DGF′=IGR=90°∴∠DGI=RGF,在GIDGRF中,GD= GFD GI=R GF,GI= GR,∴△GID≌△GRF,∴∠GID=GRF′=90°F在線段BC上,在RtEFH中,EF′=2,EFH=30°,EH=EF′=1FH=,易證RGF≌△HFE,RF′=EH,RGRC=FH,CH=RF′=EH,CE′=RG′=HF′=,CG′=RG′=,CE′+CG′=

故選A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是拋物線型拱橋,當(dāng)拱頂離水面8m時,水面寬AB12m.當(dāng)水面上升6m時達到警戒水位,此時拱橋內(nèi)的水面寬度是多少m?

下面給出了解決這個問題的兩種方法,請補充完整:

方法一:如圖1,以點A為原點,AB所在直線為x軸,建立平面直角坐標系xOy,

此時點B的坐標為(      ),拋物線的頂點坐標為(   ,   ),

可求這條拋物線所表示的二次函數(shù)的解析式為   

當(dāng)y6時,求出此時自變量x的取值,即可解決這個問題.

方法二:如圖2,以拋物線頂點為原點,對稱軸為y軸,建立平面直角坐標系xOy,

這時這條拋物線所表示的二次函數(shù)的解析式為   

當(dāng)y   時,求出此時自變量x的取值為   ,即可解決這個問題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是二次函數(shù)yax2+bx+ca≠0)的圖象的一部分,給出下列命題:①a+b+c=0;②b>2a;③ax2+bx+c=0的兩根分別為﹣3和1;④a﹣2b+c>0,其中正確的命題是( )

A. ①②③B. ①③C. ①④D. ①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C = 90°,∠BAC 的平分線交BC于點D,點OAB上,以點O為圓心、OA長為半徑的圓恰好經(jīng)過點D,分別交AC,AB于點E,F

(1)試判斷直線BC與⊙O的位置關(guān)系,并說明理由;

(2)OA = 2,∠B = 30°,求涂色部分的面積(結(jié)果保留和根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料,解答問題:

例:用圖象法解一元二次不等式:

解:設(shè),則的二次函數(shù).

拋物線開口向上.

當(dāng)時,,解得

由此得拋物線的大致圖象如圖所示.

觀察函數(shù)圖象可知:當(dāng)時,的解集是:

1)觀察圖象,直接寫出一元二次不等式:的解集是 ;

2)仿照上例,用圖象法解一元二次不等式:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ACBC,過點C的直線MNAB,DAB邊上一點,且AD=4,過點DDEBC,交直線MNE,垂足為F,連接CDBE

(1)求CE的長;

(2)當(dāng)DAB中點時,四邊形BECD是什么特殊四邊形?說明你的理由;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,直線y=x經(jīng)過點A,作ABx軸于點B,將ABO繞點B逆時針旋轉(zhuǎn)60°得到CBD,若點B的坐標為(2,0),則點C的坐標為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在路燈下,小明的身高如圖中線段AB所示,他在地面上的影子如圖中線段AC所示,小亮的身高如圖中線段FG所示,路燈燈泡在線段DE上.

1)請你確定燈泡所在的位置,并畫出表示小亮在燈光下形成的影子線段.

2)如果燈桿高12m,小亮的身高1.6m,小亮與燈桿的距離13m,請求出小亮影子的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】射線QN與等邊ABC的兩邊AB,BC分別交于點MN,且ACQNAM=MB=2cm,QM=4cm.動點P從點Q出發(fā),沿射線QN以每秒1cm的速度向右移動,經(jīng)過t秒,以點P為圓心,cm為半徑的圓與ABC的邊相切(切點在邊上),請寫出t可取的一切值 (單位:秒)

查看答案和解析>>

同步練習(xí)冊答案