【題目】如圖,在ACBC,過點C的直線MNAB,DAB邊上一點,且AD=4,過點DDEBC,交直線MNE,垂足為F,連接CD、BE

(1)求CE的長;

(2)當DAB中點時,四邊形BECD是什么特殊四邊形?說明你的理由;

【答案】(1)CE的長是4;

(2)當DAB中點時,四邊形BECD是菱形,理由見解析.

【解析】試題分析:(1)先求出四邊形ADEC是平行四邊形,根據(jù)平行四邊形的性質(zhì)推出即可;
2)求出四邊形BECD是平行四邊形,求出CD=BD,根據(jù)菱形的判定推出即可.

試題解析:(1DEBC,

,

ACDE

MNAB

CEAD

四邊形ADEC是平行四邊形.

CEAD

AD4

CE4

(2)四邊形BECD是菱形,理由:

DAB中點,

ADBD

又由(1)CEAD,

BDCE,

BDCE

四邊形BECD是平行四邊形

,DAB中點,

CDBD

四邊形BECD是菱形.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如果一個角的余角與它的補角度數(shù)之比為2:5,則這個角等于_______度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtABC中,ABC為直角,以AB為直徑作OAC于點D,點EBC中點,連結(jié)DE,DB.

(1)求證:DEO相切;

(2)若C=30°,求BOD的度數(shù);

(3)在(2)的條件下,若O半徑為2, 求陰影部分面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】因式分解與整數(shù)乘法一樣,都是一種恒等變形,即在變形的過程中,形變值不變,于是將多項式x2﹣y2+(2x+2y)分解因式的結(jié)果為(
A.(x+y)(x﹣y+2)
B.(x+y)(x﹣y﹣2)
C.(x﹣y)(x﹣y+2)
D.(x﹣y)(x﹣y﹣2)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為增強學生的身體素質(zhì),教育行政部門規(guī)定學生每天參加戶外活動的平均時間不少于1小時.為了解學生參加戶外活動的情況,對部分學生參加戶外活動的時間進行抽樣調(diào)查,并將調(diào)查結(jié)果繪制作成如下兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息解答下列問題:

(1)在這次調(diào)查中共調(diào)查了多少名學生?

(2)求戶外活動時間為1.5小時的人數(shù),并補充頻數(shù)分布直方圖;

(3)求表示戶外活動時間1小時的扇形圓心角的度數(shù);

(4)本次調(diào)查中學生參加戶外活動的平均時間是否符合要求?戶外活動時間的眾數(shù)和中位數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】關(guān)于三角函數(shù)有如下的公式:

sin(α+β)=sinαcosβ+cosαsinβ①;cos(α+β)=cosαcosβsinαsinβ②;tan(α+β)=

利用這些公式可將某些不是特殊角的三角函數(shù)轉(zhuǎn)化為特殊角的三角函數(shù)來求值,

如:tan105°=tan(45°+60°)====﹣(2+).

根據(jù)上面的知識,你可以選擇適當?shù)墓浇鉀Q下面的實際問題:

如圖,直升飛機在一建筑物CD上方A點處測得建筑物頂端D點的俯角α=60°,底端C點的俯角β=75°,此時直升飛機與建筑物CD的水平距離BC42m,求建筑物CD的高.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,甲、乙、丙、丁四個長方形拼成正方形EFGH,中間陰影為正方形.已知甲、乙、丙、丁四個長方形面積的和是32cm2 , 四邊形ABCD的面積是20cm2 , 則甲、乙、丙、丁四個長方形周長的總和為cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A、B、C、D在一條直線上,AB=CD,四邊形BECF是平行四邊形.
(1)求證:△AEC≌△DFB;
(2)求證:∠AEB=∠DFC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算題
(1)計算:993×1007
(2)分解因式:﹣2a3+8a2﹣8a.

查看答案和解析>>

同步練習冊答案