如圖,已知反比例函數(shù)y=
m
x
的圖象經(jīng)過點N,則此反比例函數(shù)的解析式為______.
根據(jù)題意得:2=
m
2

解得:m=4.
則此反比例函數(shù)的解析式為y=
4
x

故答案為:y=
4
x
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

在某一電路中,保持電壓不變,電流I(安)與電阻R(歐)成反比例函數(shù)關(guān)系,其圖象如圖,則這一電路的電壓為______伏.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在平面直角坐標系中,直線y=-3x+3與x軸、y軸分別交于A、B兩點,以AB為邊在第一象限作正方形ABCD,點D在雙曲線y=
k
x
(k≠0)上.將正方形沿x軸負方向平移a個單位長度后,點C恰好落在該雙曲線上,則a的值是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,函數(shù)y=
k
x
(x>0常數(shù)k>0)的圖象經(jīng)過點A(1,2),B(m,n)(m>1),過點B作y軸的垂線,垂足為C,若△ABC面積為2,求點B的坐標______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,已知雙曲線y=
k
x
(k>0)
與直線y=k′x交于A,B兩點,點A在第一象限.試解答下列問題:
(1)若點A的坐標為(4,2),則點B的坐標為______;若點A的橫坐標為m,則點B的坐標可表示為______;
(2)如圖2,過原點O作另一條直線l,交雙曲線y=
k
x
(k>0)
于P,Q兩點,點P在第一象限.
①說明四邊形APBQ一定是平行四邊形;
②設(shè)點A,P的橫坐標分別為m,n,四邊形APBQ可能是矩形嗎?可能是正方形嗎?若可能,直接寫出m,n應(yīng)滿足的條件;若不可能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

甲、乙兩家商場進行促銷活動,甲商場采用“買200減100”的促銷方式,即購買商品的總金額滿200元但不足400元,少付100元;滿400元但不足600元,少付200元;…,乙商場按顧客購買商品的總金額打6折促銷.
(1)若顧客在甲商場購買了510元的商品,付款時應(yīng)付多少錢?
(2)若顧客在甲商場購買商品的總金額為x(400≤x<600)元,優(yōu)惠后得到商家的優(yōu)惠率為p(p=
優(yōu)惠金額
購買商品的總金額
),寫出p與x之間的函數(shù)關(guān)系式,并說明p隨x的變化情況;
(3)品牌、質(zhì)量、規(guī)格等都相同的某種商品,在甲乙兩商場的標價都是x(200≤x<400)元,你認為選擇哪家商場購買商品花錢較少?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,反比例函數(shù)y=
k
x
的圖象經(jīng)過點A(-
3
,b),過點A作AB垂直x軸于點B,△AOB的面積為
3

(1)求k和b的值;
(2)若一次函數(shù)y=ax+1的圖象經(jīng)過點A,并且與x軸相交于點M,求△AOM的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知反比例函數(shù)y=
k
x
過點P,P點的坐標為(3-m,2m),m是分式方程
m-3
m-2
+1=
3
2-m
的解,PA⊥x軸于點A,PB⊥y軸于點B.
(1)試判斷四邊形PAOB的形狀,并說明理由;

(2)連接AB,E為AB上的一點,EF⊥BP于點F,G為AE的中點,連接OG、FG,試問FG和OG有何數(shù)量關(guān)系?請寫出你的結(jié)論并證明;

(3)若M為反比例函數(shù)y=
k
x
在第三象限內(nèi)的一動點,過M作MN⊥x軸于交AB的延長線于點N,是否存在一點M使得四邊形OMNB為等腰梯形?若存在,請求出M點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在同一直角坐標系中,正比例函數(shù)y=kx與反比例函數(shù)y=
2
3
x
的圖象分別交于第一、三象限的點B,D,已知點A(-a,O)、C(a,0).
(1)直接判斷并填寫:四邊形ABCD的形狀一定是______;
(2)①當點B為(p,2)時,四邊形ABCD是矩形,試求p,k,和a的值;
②觀察猜想:對①中的a值,能使四邊形ABCD為矩形的點B共有幾個?(不必說理)
(3)試探究:四邊形ABCD能不能是菱形?若能,直接寫出B點的坐標;若不能,說明理由.

查看答案和解析>>

同步練習(xí)冊答案