如圖所示,反比例函數(shù)y=
k
x
的圖象經(jīng)過點(diǎn)A(-
3
,b),過點(diǎn)A作AB垂直x軸于點(diǎn)B,△AOB的面積為
3

(1)求k和b的值;
(2)若一次函數(shù)y=ax+1的圖象經(jīng)過點(diǎn)A,并且與x軸相交于點(diǎn)M,求△AOM的面積.
(1)點(diǎn)A(-
3
,b),過點(diǎn)A作AB垂直x軸于點(diǎn)B,
即有OB=
3

又△AOB的面積為
3

故有
3
=
1
2
×
3
b;
即b=2,
A(-
3
,2),
代入反比例函數(shù)中,
得k=-2
3
;

(2)將A點(diǎn)的坐標(biāo)代入直線方程,
2=-
3
a
+1;
得a=-
3
3
;
即直線方程為y=-
3
3
x+1,
令y=0,得x=
3
;
即OM=
3
;
所以S△AOM=
1
2
OM•b=
3
;
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,直線AB過點(diǎn)A(m,0),B(0,n),且m+n=20(其中m>0,n>0).
(1)m為何值時(shí),△OAB面積最大?最大值是多少?
(2)如圖2,在(1)的條件下,函數(shù)y=
k
x
(k>0)
的圖象與直線AB相交于C、D兩點(diǎn),若S△OCA=
1
8
S△OCD
,求k的值.
(3)在(2)的條件下,將△OCD以每秒1個(gè)單位的速度沿x軸的正方向平移,如圖3,設(shè)它與△OAB的重疊部分面積為S,請(qǐng)求出S與運(yùn)動(dòng)時(shí)間t(秒)的函數(shù)關(guān)系式(0<t<10).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,已知點(diǎn)A(a,0),B(0,b),且a、b滿足
a+1
+(a+b+3)2=0
,?ABCD的邊AD與y軸交于點(diǎn)E,且E為AD中點(diǎn),雙曲線y=
k
x
經(jīng)過C、D兩點(diǎn).
(1)求k的值;
(2)點(diǎn)P在雙曲線y=
k
x
上,點(diǎn)Q在y軸上,若以點(diǎn)A、B、P、Q為頂點(diǎn)的四邊形是平行四邊形,試求滿足要求的所有點(diǎn)P、Q的坐標(biāo);
(3)以線段AB為對(duì)角線作正方形AFBH(如圖3),點(diǎn)T是邊AF上一動(dòng)點(diǎn),M是HT的中點(diǎn),MN⊥HT,交AB于N,當(dāng)T在AF上運(yùn)動(dòng)時(shí),
MN
HT
的值是否發(fā)生改變?若改變,求出其變化范圍;若不改變,請(qǐng)求出其值,并給出你的證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知反比例函數(shù)y=
m
x
的圖象經(jīng)過點(diǎn)N,則此反比例函數(shù)的解析式為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,D是反比例函數(shù)y=
k
x
(k<0)
的圖象上一點(diǎn),過D作DE⊥x軸于E,DC⊥y軸于C,一次函數(shù)y=-x+m與y=-
3
3
x+2
的圖象都經(jīng)過點(diǎn)C,與x軸分別交于A、B兩點(diǎn),四邊形DCAE的面積為4,則k的值為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,菱形OABC的頂點(diǎn)C的坐標(biāo)為(3,4),頂點(diǎn)A在x軸的正半軸上.反比例函數(shù)y=
k
x
(x>0)的圖象經(jīng)過頂點(diǎn)B,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直線y=k和雙曲線y=
k
x
相交于點(diǎn)P,過P點(diǎn)作PA0垂直于x軸,垂足為A0,x軸上的點(diǎn)A0,A1,A2的橫坐標(biāo)是連續(xù)的整數(shù),過點(diǎn)A1,A2別作x軸的垂線,與雙曲線y=
k
x
(x>0)及直線y=k分別交于點(diǎn)B1,B2,C1,C2
(1)求A0點(diǎn)坐標(biāo);
(2)求
C1B1
A1B1
C2B2
A2B2
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,矩形OABC的兩邊OA、OC分別在x軸、y軸的正半軸上,OA=4,OC=2,G為矩形對(duì)角線的交點(diǎn),經(jīng)過點(diǎn)G的雙曲線y=
k
x
與BC相交于點(diǎn)M,則CM:MB=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,△ABC的邊AC在x軸上,邊BC⊥x軸,雙曲線y=
k
x
(x>0)
與邊BC交于點(diǎn)D(4,m),與邊AB交于點(diǎn)E(2,n).
(1)求n關(guān)于m的函數(shù)關(guān)系式;
(2)若BD=2,tan∠BAC=
1
2
,求k的值和點(diǎn)B的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案