【題目】如圖,已知矩形ABCD中,AB=3,AD=2,分別以邊AD,BC為直徑在矩形ABCD的內(nèi)部作半圓O1和半圓O2 , 一平行于AB的直線EF與這兩個半圓分別交于點(diǎn)E、點(diǎn)F,且EF=2(EF與AB在圓心O1和O2的同側(cè)),則由 ,EF, ,AB所圍成圖形(圖中陰影部分)的面積等于 .
【答案】3﹣ ﹣
【解析】解:連接O1O2 , O1E,O2F, 則四邊形O1O2FE是等腰梯形,
過E作EG⊥O1O2 , 過F⊥O1O2 ,
∴四邊形EGHF是矩形,
∴GH=EF=2,
∴O1G= ,
∵O1E=1,
∴GE= ,
∴ = ;
∴∠O1EG=30°,
∴∠AO1E=30°,
同理∠BO2F=30°,
∴陰影部分的面積=S ﹣2S ﹣S =3×1﹣2× ﹣ (2+3)× =3﹣ ﹣ .
所以答案是:3﹣ ﹣ .
【考點(diǎn)精析】本題主要考查了矩形的性質(zhì)和扇形面積計算公式的相關(guān)知識點(diǎn),需要掌握矩形的四個角都是直角,矩形的對角線相等;在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形;扇形面積S=π(R2-r2)才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明平時喜歡玩“QQ農(nóng)場”游戲,本學(xué)期初二年級數(shù)學(xué)備課組組織了幾次數(shù)學(xué)反饋性測試,小明的數(shù)學(xué)成績?nèi)缦卤恚?/span>
月份x(月) | 9 | 10 | 11 | 12 | … |
成績y(分) | 90 | 80 | 70 | 60 | … |
(1)以月份為x軸,成績?yōu)?/span>y軸,根據(jù)上表提供的數(shù)據(jù)在下列直角坐標(biāo)系中描點(diǎn);
(2)觀察①中所描點(diǎn)的位置關(guān)系,照這樣的發(fā)展趨勢,猜想y與x之間的函數(shù)關(guān)系,并求出所猜想的函數(shù)表達(dá)式;
(3)若小明繼續(xù)沉溺于“QQ農(nóng)場”游戲,照這樣的發(fā)展趨勢,請你估計元月份的期末考試中小明的數(shù)學(xué)成績,并用一句話對小明提出一些建議.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,CD⊥AB于點(diǎn)D,⊙D經(jīng)過點(diǎn)B,與BC交于點(diǎn)E,與AB交與點(diǎn)F.已知tanA= ,cot∠ABC= ,AD=8.
(1)求⊙D的半徑;
(2)求CE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖所示,已知點(diǎn)C在線段AB上,線段AB=12,點(diǎn)M,N分別是AC,BC的中點(diǎn),求線段MN的長度.
(2)把(1)中的“點(diǎn)C在線段AB上”改為“點(diǎn)C在線段AB延長上”,其他條件均不變,畫圖并求出線段MN的長度;
(3)已知線段AB,點(diǎn)C為直線AB外任意一點(diǎn),點(diǎn)M,N分別是AC,BC的中點(diǎn),連接MN,畫圖并猜想線段MN與線段AB的數(shù)量關(guān)系.(只要求畫圖,寫出結(jié)論)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠BAC=90°,AB=3,AC=4,點(diǎn)D是BC的中點(diǎn),將△ABD沿AD翻折得到△AED,連CE,則線段CE的長等于( )
A.2
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)P是△ABC的邊AC上一點(diǎn).
(1)寫出點(diǎn)A、C的坐標(biāo):A: ;C:
(2)△ABC的面積為
(3)請在這個坐標(biāo)系內(nèi)畫出△A1B1C1,使△A1B1C1與△ABC關(guān)于y軸對稱.
(4)若點(diǎn)P的坐標(biāo)為(a+1,b﹣1),點(diǎn)P關(guān)于y軸的對稱點(diǎn)為點(diǎn)Q,則點(diǎn)Q的坐標(biāo)為 (用含字母a或b的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】求值:
(1)已知x﹣2的平方根是±2,2x+y+7的立方根是3,求x2+y2的平方根.
(2)已知實(shí)數(shù)a、b滿足(a﹣2)2+=0,求b﹣a的算術(shù)平方根
(3)已知y=,求的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的一元二次方程ax2+bx+=0有兩個相等的實(shí)數(shù)根,寫出一組滿足條件的實(shí)數(shù)a,b的值:a= , b= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,表示一次函數(shù)y=ax+b與正比例函數(shù)y=abx(a,b是常數(shù),且ab≠0)的圖象是( )
A. B.
C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com