【題目】問題情境:如圖1,AB∥CD, ,.求度數(shù).
小明的思路是:如圖2,過P作PE∥AB,通過平行線性質(zhì),可得 _______.
問題遷移:如圖3,AD∥BC,點P在射線OM上運動, , .
(1)當(dāng)點P在A、B兩點之間運動時, 、、之間有何數(shù)量關(guān)系?請說明理由.
(2)如果點P在A、B兩點外側(cè)運動時(點P與點A、B、O三點不重合),請你直接寫出、、之間的數(shù)量關(guān)系.
【答案】;
(1),理由見解析;
(2)當(dāng)點P在B、O兩點之間時, ;
當(dāng)點P在射線AM上時, .
【解析】試題分析:(1)過P作PE∥AB,通過平行線性質(zhì)求∠APC即可;(2)過P作PE∥AD交CD于E,推出AD∥PE∥BC,根據(jù)平行線的性質(zhì)得出∠α=∠DPE,∠β=∠CPE,即可得出答案;(3)畫出圖形,根據(jù)平行線的性質(zhì)得出∠α=∠DPE,∠β=∠CPE,即可得出答案.
試題解析:(1)過點P作PE∥AB,
∵AB∥CD,
∴PE∥AB∥CD,
∴∠A+∠APE=180°,∠C+∠CPE=180°,
∵∠PAB=130°,∠PCD=120°,
∴∠APE=50°,∠CPE=60°,
∴∠APC=∠APE+∠CPE=110°.
故答案為110°.
(1)過P作PQ∥AD.
∵AD∥BC,
∴AD∥PQ ,
PQ∥BC
∵PQ∥AD,
∴
同理,
∴
(2)(3)當(dāng)P在BA延長線時,
∠CPD=∠β∠α;
當(dāng)P在AB延長線時,
∠CPD=∠α∠β.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象經(jīng)過坐標(biāo)原點,與軸的另一個交點為A(-2,0).
(1)求二次函數(shù)的解析式
(2)在拋物線上是否存在一點P,使△AOP的面積為3,若存在請求出點P的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與x軸的一個交點為B(4,0),另一個交點為A,且與y軸相交于C點.
(1)求m的值及C點坐標(biāo);
(2)在直線BC上方的拋物線上是否存在一點M,使得它與B,C兩點構(gòu)成的三角形面積最大,若存在,求出此時M點坐標(biāo);若不存在,請簡要說明理由;
(3)P為拋物線上一點,它關(guān)于直線BC的對稱點為Q.
①當(dāng)四邊形PBQC為菱形時,求點P的坐標(biāo);
②點P的橫坐標(biāo)為t(0<t<4),當(dāng)t為何值時,四邊形PBQC的面積最大,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,CD是高,BE平分∠ABC交CD于點E,EF∥AC交AB于點F,交BC于點G.在結(jié)論:(1) ;(2) ;(3);(4) 中,一定成立的有( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:拋物線經(jīng)過坐標(biāo)原點,且當(dāng)時, y隨x的增大而減小.
(1)求拋物線的解析式;
(2)如下圖,設(shè)點A是該拋物線上位于x軸下方的一個動點,過點A作x軸的平行線交拋物線于另一點D,再作ABx軸于點B, DCx軸于點C.
①當(dāng) BC=1時,直接寫出矩形ABCD的周長;
②設(shè)動點A的坐標(biāo)為(a, b),將矩形ABCD的周長L表示為a的函數(shù),并寫出自變量的取值范圍,判斷周長是否存在最大值,如果存在,求出這個最大值,并求出此時點A的坐標(biāo);如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知平行四邊形ABCD.
(1)用直尺和圓規(guī)作出么ABC的平分線BE,交AD的延長線于點E,交DC于點F(保留作圖痕跡,不寫作法);
(2)求證:△ABE是等腰三角形;
(3)在(1)中所得圖形中,除△ABE外,請你寫出其他的等腰三角形.(不要求證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,放在平面直角坐標(biāo)系中的正方形ABCD的邊長為4,現(xiàn)做如下實驗:拋擲一枚均勻的正四面體骰子(如圖,它有四個頂點,各頂點數(shù)分別是1、2、3、4),每個頂點朝上的機會是相同的,連續(xù)拋擲兩次,將骰子朝上的點數(shù)作為直角坐標(biāo)系中點P的坐標(biāo)(第一次的點數(shù)為橫坐標(biāo),第二次的點數(shù)為縱坐標(biāo)).
(1)求點P落在正方形面上(含邊界,下同)的概率;
(2)將正方形ABCD平移數(shù)個單位,是否存在一種平移,使點P落在正方形面上的概率為?若存在,指出其中的一種平移方式;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小穎用的簽字筆可在甲、乙兩個商店買到.已知兩個商店的標(biāo)價都是每支簽字筆2元.但甲商店的優(yōu)惠條件是:購買10支以上,從第11支開始按標(biāo)價的7折賣;乙商店的優(yōu)惠條件是:從第1支開始就按標(biāo)價的8.5折賣.
(1)小穎要買20支簽字筆,到哪個商店購買較省錢?
(2)小穎現(xiàn)有40元,最多可買多少支簽字筆?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一根 24cm 的筷子,置于底面直徑為 15cm,高 8cm 的裝滿水的無蓋圓柱形水杯中,設(shè)筷子浸沒在杯子里面的長度為 hcm,則 h 的取值范圍是( )
A.h≤15cmB.h≥8cmC.8cm≤h≤17cmD.7cm≤h≤16cm
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com