【題目】我們把解相同的兩個方程稱為同解方程.例如:方程:與方程的解都為,所以它們?yōu)橥夥匠?/span>.
(1)若方程與關于的方程是同解方程,求的值;
(2)若關于的方程和是同解方程,求的值;
(3)若關于的方程和是同解方程,求的值.
【答案】(1) =11;(2);(3) 6.
【解析】
(1)分別將兩個關于x的方程解出來,根據(jù)同解方程的定義,列出等式,建立一個關于m的方程,然后解答;
(2)分別將兩個關于x的方程解出來,得到兩個用含a的代數(shù)式表示的解,根據(jù)同解方程的定義,列出等式,建立一個關于a的方程,然后解答;
(3)分別求出兩個關于x的方程的解,根據(jù)同解方程的定義,列出關于a,b的等式,然后整體代入求值.
解:(1)解方程得x=7,
把x=7代入得28+5=,
解得 =11;
(2)解關于x的方程得x= ,
解關于x的方程得x= ,
∵關于的方程和是同解方程,
∴,
解得.
(3)解關于的方程得,
解關于的方程得,
∵和是同解方程,
∴,
∴,
∴==6.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在8×8的正方形網(wǎng)格中,每個小正方形的頂點稱為格點,點A、B、C均在格點上,按下述要求畫圖并標注相關字母.
(1)畫線段AB,畫射線BC,畫直線AC;
(2)過點B畫線段BD⊥AC,垂足為點D;
(3)取線段AB的中點E,過點E畫BD的平行線,交AC于點F.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,是由一些奇數(shù)排成的數(shù)陣.
(1)設框中的第一個數(shù)為,則框中這四個數(shù)和為 .
(2)若這樣框出的四個數(shù)的和,求這四個數(shù);
(3)是否存在這樣的四個數(shù),使它們的和為?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有一次,小明坐著輪船由A點出發(fā)沿正東方向AN航行,在A點望湖中小島M,測得∠MAN=30°,航行100米到達B點時,測得∠MBN=45°,你能算出A點與湖中小島M的距離嗎?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,OB和OC分別平分∠ABC和∠ACB,過O作DE∥BC,分別交AB、AC于點D、E,若DE=5,BD=3,則線段CE的長為( )
A. 3 B. 1 C. 2 D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】利用如圖1的二維碼可以進行身份識別.某校建立了一個身份識別系統(tǒng),圖2是某個學生的識別圖案,黑色小正方形表示1,白色小正方形表示0.將第一行數(shù)字從左到右依次記為,,,,那么可以轉換為該生所在班級序號,其序號為.如圖2第一行數(shù)字從左到右依次為0,1,0,1,序號為,表示該生為5班學生.表示6班學生的識別圖案是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=90°,D是邊AC上的一點,連接BD,使∠A=2∠1,E是BC上的一點,以BE為直徑的⊙O經(jīng)過點D.
(1)求證:AC是⊙O的切線;
(2)若∠A=60°,⊙O的半徑為2,求陰影部分的面積.(結果保留根號和π)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀:在用尺規(guī)作線段等于線段時,小明的具體做法如下:
已知:如圖,線段.
求作:線段,使得線段.
作法: ① 作射線;
② 在射線上截取.
∴線段為所求.
解決下列問題:
已知:如圖,線段.
(1)請你仿照小明的作法,在上圖中的射線上作線段,使得;(不要求寫作法和結論,保留作圖痕跡)
(2)在(1)的條件下,取的中點.若,求線段的長.(要求:第(2)問重新畫圖解答)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀對學生的成長有著深遠的影響,某中學為了解學生每周課余閱讀的時間,在本校隨機抽取了若干名學生進行調(diào)查,并依據(jù)調(diào)查結果繪制了以下不完整的統(tǒng)計圖表.
組別 | 時間(小時) | 頻數(shù)(人數(shù)) | 頻率 |
A | 0≤t≤0.5 | 6 | 0.15 |
B | 0.5≤t≤1 | a | 0.3 |
C | 1≤t≤1.5 | 10 | 0.25 |
D | 1.5≤t≤2 | 8 | b |
E | 2≤t≤2.5 | 4 | 0.1 |
合計 | 1 |
請根據(jù)圖表中的信息,解答下列問題:
(1)表中的a= ,b= ,中位數(shù)落在 組,將頻數(shù)分布直方圖補全;
(2)估計該校2000名學生中,每周課余閱讀時間不足0.5小時的學生大約有多少名?
(3)E組的4人中,有1名男生和3名女生,該校計劃在E組學生中隨機選出兩人向全校同學作讀書心得報告,請用畫樹狀圖或列表法求抽取的兩名學生剛好是1名男生和1名女生的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com