【題目】為了促進學生體育鍛煉,某校八年級進行了體育測試,為了解女生體育測試情況,從中抽取了若干名女生的體育測試成績.
a.體育委員小李在整理頻數分布表時,不小心污染了統(tǒng)計表:
分組(分) | 頻數 | 頻數 |
21<x≤22 | 8 | 0.200 |
22<x≤23 | 4 | n |
23<x≤24 | 7 | 0.175 |
24<x≤25 | 3 | 0.075 |
25<x≤26 | 2 | 0.050 |
26<x≤27 | 8 | 0.200 |
27<x≤28 | m | 0.150 |
28<x≤29 | 2 | 0.050 |
合計 |
b.根據頻數分布表,繪制如下頻數分布直方圖:
c.在此次測試中,共測試了800米,籃球,仰臥起坐,成績統(tǒng)計如下:
項目 | 平均分 | 中位數 | 眾數 |
800米 | 8.27 | 8.5 | 8.5 |
仰臥起坐 | 7.61 | 8 | 7.5 |
籃球 | 8.69 | 9 | 8 |
根據以上信息,回答下列問題:
(1)寫出表中m,n的值;
(2)補全直方圖;
(3)請結合C中統(tǒng)計圖表,給該校女生體育訓練提供建議(至少從兩個不同的角度分析).
科目:初中數學 來源: 題型:
【題目】如圖,二次函數y=﹣x2+bx+c的圖象與x軸交于A、B兩點,與y軸交于點C,OB=OC,點D在函數圖象上,CD∥x軸且CD=2,直線l是拋物線的對稱軸,E是拋物線的頂點.
(1)求b、c的值;
(2)如圖1,連BE,線段OC上的點F關于直線l的對稱點F’恰好在線段BE上,求點F的坐標;
(3)如圖2,動點P在線段OB上,過點P作x軸的垂線分別與BC交于點M、與拋物線交于點N.試問:拋物線上是否存在點Q,使得△PQN與△APM的面積相等,且線段NQ的長度最?若存在,求出點Q的坐標;若不存在,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線y=-x-與x,y兩軸分別交于A,B兩點,與反比例函數y=的圖象在第二象限交于點C.過點A作x軸的垂線交該反比例函數圖象于點D.若AD=AC,則點D的縱坐標為___.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(如圖(1),在矩形ABCD中,AB=4,BC=3,點E是射線CD上的一個動點,把△BCE沿BE折疊,點C的對應點為F.
(1)若點F剛好落在線段AD的垂直平分線上時,求線段CE的長;
(2)若點F剛好落在線段AB的垂直平分線上時,求線段CE的長;
(3)當射線AF交線段CD于點G時,請直接寫出CG的最大值 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下面是小明設計的“作一個以已知線段為對角線正方形”的尺規(guī)作圖過程.
已知:線段AC
求證:四邊形ABCD為正方形
作法:如圖,
①作線段AC的垂直平分線MN 交AC于點O;
②以點O為圓心CO長為半徑畫圓,交直線MN于點B,D;
③順次連接AB,BC,CD,DA;
所以四邊形ABCD為所作正方形.
根據小明設計的尺規(guī)作圖過程,完成以下任務.
(1)使用直尺和圓規(guī),補全圖形;(保留作圖痕跡)
(2)完成下面的證明.
證明:∵OA=OB,OC=OD,
∴四邊形 ABCD為平行四邊形.(__________________)(填寫推理依據)
∵OA=OB=OC=OD即AC=BD.
∴ABCD為 (__________________)(填寫推理依據).
∵ AC⊥BD,
∴四邊形 ABCD為正方形(__________________________).(填寫推理依據)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=4.41cm,BC=8.83cm,P是BC上一動點,連接AP,設P,C兩點間的距離為xcm,P,A兩點間的距離為ycm.(當點P與點C重合時,x的值為0)小東根據學習函數的經驗,對函數y隨自變量x的變化而變化的規(guī)律進行了探究.下面是小東的探究過程,請補充完整:
(1)通過取點、畫圖、測量,得到了x與y的幾組值,如表:
x/cm | 0 | 0.43 | 1.00 | 1.50 | 1.85 | 2.50 | 3.60 | 4.00 | 4.30 | 5.00 | 5.50 | 6.00 | 6.62 | 7.50 | 8.00 | 8.83 |
y/cm | 7.65 | 7.28 | 6.80 | 6.39 | 6.11 | 5.62 | 4.87 | 4.47 | 4.15 | 3.99 | 3.87 | 3.82 | 3.92 | 4.06 | 4.41 |
(說明:補全表格時相關數值保留一位小數)
(2)建立平面直角坐標系,描出以補全后的表中各對對應值為坐標的點,畫出該函數的圖象;
(3)結合畫出的函數圖象,解決問題:當PA=PC時,PC的長度約為 cm.(結果保留一位小數)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形OABC是平行四邊形,點C在x軸上,反比例函數y=(x>0)的圖象經過點A(5,12),且與邊BC交于點D.若AB=BD,則點D的坐標為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】輪船沿江從A港順流行駛到B港,比從B港返回A港少用3小時,若船速為26千米/時,水速為2千米/時,求A港和B港相距多少千米.設A港和B港相距x千米.根據題意,可列出的方程是(。
A.B.
C.D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com