【題目】已知拋物線C:y=x2﹣2x+1的頂點(diǎn)為P,與y軸的交點(diǎn)為Q,點(diǎn)F(1,).
(1)求tan∠OPQ的值;
(2)將拋物線C向上平移得到拋物線C′,點(diǎn)Q平移后的對(duì)應(yīng)點(diǎn)為Q′,且FQ′=OQ′.
①求拋物線C′的解析式;
②若點(diǎn)P關(guān)于直線Q′F的對(duì)稱點(diǎn)為K,射線FK與拋物線C′相交于點(diǎn)A,求點(diǎn)A的坐標(biāo).
【答案】(1)1;(2)①y=x2﹣2x+,;②A(,)..
【解析】
試題(1)求出于y軸交點(diǎn),然后求tan∠OPQ的值.(2) ①先設(shè)出函數(shù)方程,再利用FQ′=OQ′,求出函數(shù)解析式.②把每一個(gè)點(diǎn)都用坐標(biāo)表示出來,先求出FQ'解析式,利用FQ'⊥PK,求出PK解析式,求交點(diǎn),再求出FK的解析式,與二次函數(shù)聯(lián)立,得到A點(diǎn)坐標(biāo).
試題解析:
解:(1)∵y=x2﹣2x+1=(x﹣1)2,
∴頂點(diǎn)P(1,0),
∵當(dāng)x=0時(shí),y=1,
∴Q(0,1),
∴tan∠OPQ=1.
(2)①設(shè)拋物線C′的解析式為y=x2﹣2x+m,
∴Q′(0,m)其中m>1,
∴OQ′=m,
∵F(1,),
過F作FH⊥OQ′,如圖:
∴FH=1,Q′H=m﹣,
在Rt△FQ′H中,FQ′2=(m﹣)2+1=m2﹣m+,
∵FQ′=OQ′,
∴m2﹣m+=m2,
∴m=,
∴拋物線C′的解析式為y=x2﹣2x+,
②方法一:設(shè)點(diǎn)A(x0,y0),則y0=x02﹣2x0+①,
過點(diǎn)A作x軸的垂線,與直線Q′F相交于點(diǎn)N,則可設(shè)N(x0,n),
∴AN=y0﹣n,其中y0>n,
連接FP,
∵F(1,),P(1,0),
∴FP⊥x軸,
∴FP∥AN,
∴∠ANF=∠PFN,
連接PK,則直線Q′F是線段PK的垂直平分線,
∴FP=FK,有∠PFN=∠AFN,
∴∠ANF=∠AFN,則AF=AN,
∵A(x0,y0),F(xiàn)(1,),
∴AF2=(x0﹣1)2+(y0﹣)2=x02﹣2x0+1+y02﹣y0+=x02﹣2x0++y02﹣y0=(x02﹣2x0+)+y02﹣y0,②
∵y0=x02﹣2x0+①,
將①右邊整體代換②得,AF2=(x02﹣2x0+)+y02﹣y0=y0+y02﹣y0=y02,
∵y0>0,
∴AF=y0,
∴y0=y0﹣n,
∴n=0,
∴N(x0,0),
設(shè)直線Q′F的解析式為y=kx+b,
,
解,
∴y=x+,
由點(diǎn)N在直線Q′F上,得,0=x+,
∴x0=,
將x0=代入y0=x2﹣2x0+,
∴y0=,
∴A(,).
方法二:由①有,Q'(0,),F(1,),P(1,0),
∴直線FQ'的解析式為y=x+,①
∵FQ'⊥PK,P(1,0),
∴直線PK的解析式為y=x﹣,②
聯(lián)立①②得出,直線FQ'與PK的交點(diǎn)M坐標(biāo)為(,),
∵點(diǎn)P,K關(guān)于直線FQ'對(duì)稱,
∴K(,),
∵F(1,),
∴直線FK的解析式為 y=x+③,
∵射線FK與拋物線C′:y=x2﹣2x+④相交于點(diǎn)A,
∴聯(lián)立③④得,,,或(舍),
∴A(,).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)y=x+4的圖象與二次函數(shù)y=ax(x﹣2)的圖象相交于A(﹣1,b)和B,點(diǎn)P是線段AB上的動(dòng)點(diǎn)(不與A、B重合),過點(diǎn)P作PC⊥x軸,與二次函數(shù)y=ax(x﹣2)的圖象交于點(diǎn)C.
(1)求a、b的值
(2)求線段PC長(zhǎng)的最大值;
(3)若△PAC為直角三角形,請(qǐng)直接寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在 中 ,平分交 于 ,的兩邊分別與, 相交于,兩點(diǎn),且.
(1)如圖,若, ,, ,.
①寫出 °,的長(zhǎng)是 .
②求四邊形的周長(zhǎng).
(2)如圖,過作于,作于,先補(bǔ)全圖乙再證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市有三個(gè)景區(qū)是人們節(jié)假日游玩的熱點(diǎn)景區(qū),某學(xué)校對(duì)七(1)班學(xué)生“五一”小長(zhǎng)假隨父母到這三個(gè)景區(qū)游玩的計(jì)劃做了全面調(diào)查,調(diào)查分四個(gè)類別,A:三個(gè)景區(qū);B:游兩個(gè)景區(qū);C:游一個(gè)景區(qū);D:不到這三個(gè)景區(qū)游玩,現(xiàn)根據(jù)調(diào)查結(jié)果繪制了如下不完全的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中信息解答下列問題:
(1)九(1)班現(xiàn)有學(xué)生__________人,在扇形統(tǒng)計(jì)圖中表示“B類別”的扇形的圓心角的度數(shù)為__________;
(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)若該校七年級(jí)有1000名學(xué)生,求計(jì)劃“五一”小長(zhǎng)假隨父母到這三個(gè)景區(qū)游玩的學(xué)生多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四邊形ABCD中,AB=AD,BC=CD.
(1)如圖1,請(qǐng)連接AC,BD,求證:AC垂直平分BD;
(2)如圖2,若∠BCD=60°,∠ABC=90°,E,F(xiàn)分別為邊BC,CD上的動(dòng)點(diǎn),且∠EAF=60°,AE,AF分別與BD交于G,H,求證:△AGH∽△AFE;
(3)如圖3,在(2)的條件下,若 EF⊥CD,直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,是上一點(diǎn),半徑的延長(zhǎng)線與過點(diǎn)的直線交于點(diǎn),,.
(1)求證:是的切線;
(2)若,,求弦的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=60°,∠BAC的平分線AD與邊BC的垂直平分線相交于點(diǎn)D,DE⊥AB交AB的延長(zhǎng)線于點(diǎn)E,DF⊥AC于點(diǎn)F,現(xiàn)有下列結(jié)論:①DE=DF;②DE+DF=AD;③AM平分∠ADF;④AB+AC=2AE;其中正確的有( )
A.個(gè)B.個(gè)C.個(gè)D.個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,從A地到B地的公路需要經(jīng)過C地,根據(jù)規(guī)劃,將在A,B兩地之間修建一條筆直的公路.已知AC=10千米,∠CAB=34°,∠CBA=45°,求改直后公路AB的長(zhǎng)(結(jié)果精確到0.1千米)
(參考數(shù)據(jù):sin34°≈0.559,cos34°≈0.829,tan34°≈0.675)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸相交于A、B兩點(diǎn),與y軸相交于點(diǎn)C,且點(diǎn)B與點(diǎn)C的坐標(biāo)分別為B(3,0).C(0,3),點(diǎn)M是拋物線的頂點(diǎn).
(1)求二次函數(shù)的關(guān)系式;
(2)點(diǎn)P為線段MB上一個(gè)動(dòng)點(diǎn),過點(diǎn)P作PD⊥x軸于點(diǎn)D.若OD=m,△PCD的面積為S,試判斷S有最大值或最小值?并說明理由;
(3)在MB上是否存在點(diǎn)P,使△PCD為直角三角形?如果存在,請(qǐng)求出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com