【題目】如圖,在等邊三角形ABC的外側(cè)作直線AP,點C關(guān)于直線AP的對稱點為點D,連接ADBD,其中BD交直線AP于點E

1)依題意補全圖形;

2)若∠PAC20°,求∠AEB的度數(shù);

【答案】1)見詳解;(260°

【解析】

1)作出點C關(guān)于直線AP的對稱點為點D,連接AD,BD,即可得到所作圖形;

2)由等邊三角形的性質(zhì)和軸對稱的性質(zhì),可得AB=AD,∠BAD=100°,結(jié)合三角形內(nèi)角和定理,求出∠ADB的度數(shù),然后由三角形外角的性質(zhì),即可求解.

1)補全圖形,如圖所示:

2)∵點C關(guān)于直線AP的對稱點為點D

AC=AD,∠PAD=PAC20°,

∵三角形ABC是等邊三角形,

AB=AC,∠BAC=60°,

AB=AD,∠BAD=60°+20°+20°=100°,

∴∠ADB=180°-100°)÷2=40°,

∴∠AEB=ADB+PAD=40°+20°=60°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市為了鼓勵居民節(jié)約用水,決定實行兩級收費制度.若每月用水量不超過14噸,則每噸按政府補貼優(yōu)惠價a元收費;若每月用水量超過14噸,則超過部分每噸按市場調(diào)節(jié)價b元收費.小劉家3月份用水10噸,交水費20元;4月份用水16噸,交水費35元.

1)求每噸水的政府補貼優(yōu)惠價和市場調(diào)節(jié)價分別是多少?

2)設(shè)每月用水量為x噸,應(yīng)交水費為y元,請寫出yx之間的函數(shù)關(guān)系式;

3)小劉預(yù)計他家5月份用水不會超過22噸,那么小劉家5月份最多交多少元水費?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點E是矩形ABCD中CD邊上一點,BCE沿BE折疊為BFE,點F落在AD上.

(1)求證:ABF∽△DFE;

(2)如果AB=12,BC=15,求tanFBE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:∠MON=30°,點A1、A2、A3在射線ON上,點B1、B2、B3在射線OM上,△A1B1A2、A2B2A3A3B3A4均為等邊三角形,若OA1=1,則△A5B5A6的邊長為( )

A.6B.16C.32D.64

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=x2﹣(2k+1)x+k2+k(k>0)

(1)當(dāng)k=時,將這個二次函數(shù)的解析式寫成頂點式;

(2)求證:關(guān)于x的一元二次方程x2﹣(2k+1)x+k2+k=0有兩個不相等的實數(shù)根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】三張形狀、大小相同但畫面不同的風(fēng)景圖片,都按同樣的方式剪成相同的三段,然后將上、中、下三段分別混合洗勻,從三堆圖片中隨機各抽出一張, 求這三張圖片恰好組成一張完整風(fēng)景圖片的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線軸于點、點,交軸于點C,且SABC=6.

1)求兩點的坐標(biāo);

2)求ABC的外接圓與拋物線的對稱軸的交點坐標(biāo);

3)點E為拋物線上的一動點(點異于,且在對稱軸右側(cè)),直線交對稱軸于N,

直線BE交對稱軸于,對稱軸交軸于,試確定 的數(shù)量關(guān)系并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD的對角線AC、BD相交于點O,EOB的中點,過點BBFACAE的延長線于點F,連接CF

1)求證:AOE≌△FBE;

2)求證:四邊形BOCF是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,BC20 cm,PQ,M,N分別從A,BC,D出發(fā),沿ADBC,CB,DA方向在矩形的邊上同時運動,當(dāng)有一個點先到達(dá)所在運動邊的另一個端點時,運動即停止.已知在相同時間內(nèi),若BQx cm(x≠0),則AP2x cm,CM3x cmDNx2 cm,

(1)當(dāng)x為何值時,點P,N重合;

(2)當(dāng)x為何值是,以PQ,MN為頂點的四邊形是平行四邊形.

查看答案和解析>>

同步練習(xí)冊答案