【題目】閱讀下列材料,然后回答問題!

在進(jìn)行二次根式的化簡(jiǎn)與運(yùn)算時(shí),我們有時(shí)會(huì)碰上如,一樣的式子,其實(shí)我們還可以將其進(jìn)一步化簡(jiǎn):

(一) =

(二)  

(三)  以上這種化簡(jiǎn)的步驟叫做分母有理化。

還可以用以下方法化簡(jiǎn):

(四)   

請(qǐng)用不同的方法化簡(jiǎn)

(1參照(三)式得=_____________________________________;

  參照(四)式得=_____________________________________。

(2)化簡(jiǎn):

【答案】(1);②;(2)

【解析】

1①分子分母同時(shí)乘以有理化因式,即可化簡(jiǎn);

②把分子2寫成53,然后利用平方差公式分解即可化簡(jiǎn);

2)根據(jù)上面的例子即可進(jìn)行化簡(jiǎn)

1①原式===

②原式===

2)原式=1++++)=1).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC和△DEC都是等腰直角三角形,∠ACB=∠DCE=90°,E在線段AC上,連接AD, BE的延長(zhǎng)線交AD于F.

(1)猜想線段BE、AD的數(shù)量關(guān)系和位置關(guān)系:_______________(不必證明);

(2)當(dāng)點(diǎn)E為△ABC內(nèi)部一點(diǎn)時(shí),使點(diǎn)D和點(diǎn)E分別在AC的兩側(cè),其它條件不變.

①請(qǐng)你在圖2中補(bǔ)全圖形;

②(1)中結(jié)論成立嗎?若成立,請(qǐng)證明;若不成立,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,OABC的頂點(diǎn)A的坐標(biāo)為(60),頂點(diǎn)B的縱坐標(biāo)為5.點(diǎn)Dx軸正半軸上一點(diǎn)(不與點(diǎn)A重合),點(diǎn)D的坐標(biāo)為(x,0),ODCDAB的面積分別記為S1、S2,設(shè)SS1S2

1)用含x的代數(shù)式表示線段AD的長(zhǎng).

2)求Sx之的函數(shù)關(guān)系式.

3)當(dāng)SDBC的面積相等時(shí),求x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,∠ABC=90°,點(diǎn)D,F(xiàn)分別是AC,AB的中點(diǎn),CEDB,BEDC.

(1)求證:四邊形DBEC是菱形;

(2)若AD=3,DF=1,求四邊形DBEC面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=ax2﹣2ax+bx軸交于A、B(3,0)兩點(diǎn),與y軸交于點(diǎn)C,且OC=3OA,設(shè)拋物線的頂點(diǎn)為D.

(1)求拋物線的解析式;

(2)在拋物線對(duì)稱軸的右側(cè)的拋物線上是否存在點(diǎn)P,使得△PDC是等腰三角形?若存在,求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;

(3)若平行于x軸的直線與該拋物線交于M、N兩點(diǎn)(其中點(diǎn)M在點(diǎn)N的右側(cè)),在x軸上是否存在點(diǎn)Q,使△MNQ為等腰直角三角形?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,BC是弦,∠ABC=30°,過圓心O作OD⊥BC,垂足為E,交弧BC于點(diǎn)D,連接DC,則∠DCB的度數(shù)為(  )

A. 30° B. 45° C. 50° D. 60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊三角形ABC的外側(cè)作直線AP,點(diǎn)C關(guān)于直線AP的對(duì)稱點(diǎn)為點(diǎn)D,連接ADBD,其中BD交直線AP于點(diǎn)E.

(1)依題意補(bǔ)全圖形;(2)若∠PAC=20°,求∠AEB的度數(shù);

(3)連結(jié)CE,寫出AE, BE, CE之間的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料:

如圖,把沿直線平行移動(dòng)線段的長(zhǎng)度,可以變到的位置;

如圖,以為軸,把翻折,可以變到的位置;

如圖,以點(diǎn)為中心,把旋轉(zhuǎn),可以變到的位置.

像這樣,其中一個(gè)三角形是由另一個(gè)三角形按平行移動(dòng)、翻折、旋轉(zhuǎn)等方法變成的.這種只改變位置,不改變形狀大小的圖形變換,叫做三角形的全等變換.

回答下列問題:

在圖中,可以通過平行移動(dòng)、翻折、旋轉(zhuǎn)中的哪一種方法怎樣變化,使變到的位置;

指圖中線段之間的關(guān)系,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC的面積為1.第一次操作:分別延長(zhǎng)AB,BCCA至點(diǎn)A1,B1C1,使A1BAB,B1CBCC1ACA,順次連結(jié)A1,B1,C1,得到△A1B1C1.第二次操作:分別延長(zhǎng)A1B1,B1C1C1A1至點(diǎn)A2,B2C2,使A2B1A1B1B2C1B1C1,C2A1C1A1,順次連結(jié)A2,B2,C2,得到△A2B2C2.…按此規(guī)律,要使得到的三角形的面積超過2013,最少經(jīng)過_____次操作.

查看答案和解析>>

同步練習(xí)冊(cè)答案