【題目】如圖1,有一張長40cm,寬30cm的長方形硬紙片,截去四個小正方形之后,折成如圖2所示的無蓋紙盒,設(shè)無蓋紙盒高為xcm

用關(guān)于x的代數(shù)式分別表示無蓋紙盒的長和寬.

若紙盒的底面積為,求紙盒的高.

現(xiàn)根據(jù)中的紙盒,制作了一個與下底面相同大小的矩形盒蓋,并在盒蓋上設(shè)計(jì)了六個總面積為的矩形圖案如圖3所示,每個圖案的高為ycm,A圖案的寬為xcm,之后圖案的寬度依次遞增1cm,各圖案的間距、A圖案與左邊沿的間距、F圖案與右邊沿的間距均相等,且不小于,求x的取值范圍和y的最小值.

【答案】(1)長,寬,(2)高為5cm,(3)x的取值范圍為:,y的最小值為10.

【解析】

根據(jù)長兩個小正方形的長,寬兩個小正方形的寬即可得到答案,

根據(jù)面積寬,列出關(guān)于x的一元二次方程,解之即可,

設(shè)各圖案的間距、A圖案與左邊沿的間距、F圖案與右邊沿的間距為m,關(guān)于x的一元一次不等式,解之即可,根據(jù)面積寬,列出y關(guān)于x的反比例函數(shù),根據(jù)反比例函數(shù)的增減性求最值.

根據(jù)題意得:長,寬

根據(jù)題意得:

整理得:

解得:舍去,,

紙盒的高為5cm,

設(shè)各圖案的間距、A圖案與左邊沿的間距、F圖案與右邊沿的間距為m,

,

解得:,

根據(jù)題意得:,

y隨著x的增大而減小,

當(dāng)取到最大值時,y取到最小值,

即當(dāng)時,,

x的取值范圍為:y的最小值為10.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=a°.則下列結(jié)論: ①∠BOE=(180﹣a)°;②OF平分∠BOD;③∠POE=∠BOF;④∠POB=2∠DOF.其中正確結(jié)論__________(填編號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC的邊AC與⊙O相交于C,D兩點(diǎn),且經(jīng)過圓心O,邊AB與⊙O相切,切點(diǎn)為B.如果∠A=34°,那么∠C等于(
A.28°
B.33°
C.34°
D.56°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,AC與BD相交于點(diǎn)O,E為OD的中點(diǎn),連接AE并延長交DC于點(diǎn)F,則SDEF:SAOB的值為(
A.1:3
B.1:5
C.1:6
D.1:11

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=5,BC=3,點(diǎn)E為射線BC上一動點(diǎn),將△ABE沿AE折疊,得到△AB′E.若B′恰好落在射線CD上,則BE的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖已知∠1=∠2,∠BAD=∠BCD,則下列結(jié)論:ABCD,②ADBC,③∠B=∠D,④∠D=∠ACB,正確的有(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠1+∠2=180°,∠B=∠D.說明ABCD的理由.

補(bǔ)全下面的說理過程,并在括號內(nèi)填上適當(dāng)?shù)睦碛?/span>

解:∵∠1+∠2=180°(已知)

∠2=∠AHB   

   (等量代換)

DEBF   

∴∠D=∠      

∵∠   =∠B(等量代換)

ABCD   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,正方形ABCD中,,繞點(diǎn)A順時針旋轉(zhuǎn),它的兩邊長分別交CB、DC或它們的延長線于點(diǎn)MN,于點(diǎn)H

如圖,當(dāng)點(diǎn)A旋轉(zhuǎn)到時,請你直接寫出AHAB的數(shù)量關(guān)系;

如圖,當(dāng)繞點(diǎn)A旋轉(zhuǎn)到時,中發(fā)現(xiàn)的AHAB的數(shù)量關(guān)系還成立嗎?如果不成立請寫出理由,如果成立請證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形OABC的頂點(diǎn)A、C分別在x軸和y軸上,點(diǎn)B的坐標(biāo)為(2,3).雙曲線y= (x>0)的圖象經(jīng)過BC的中點(diǎn)D,且與AB交于點(diǎn)E,連接DE.

(1)求k的值及點(diǎn)E的坐標(biāo);
(2)若點(diǎn)F是OC邊上一點(diǎn),且△FBC∽△DEB,求直線FB的解析式.

查看答案和解析>>

同步練習(xí)冊答案