【題目】某數(shù)學(xué)小組在數(shù)學(xué)課外活動(dòng)中,研究三角形和正方形的性質(zhì)時(shí),做了如下探究:

在△ABC中,∠BAC=90°,AB=AC,點(diǎn)D為直線BC上一動(dòng)點(diǎn)(點(diǎn)D不與B,C重合),

以AD為邊在AD右側(cè)作正方形ADEF,連接CF.

(1).如圖1,當(dāng)點(diǎn)D在線段BC上時(shí),

①.BC與CF的位置關(guān)系為:________________________________.

②.BC,CD,CF之間的數(shù)量關(guān)系為:_______________________________.

(2).如圖2,當(dāng)點(diǎn)D在線段CB的延長線上時(shí),結(jié)論①,②是否仍然成立?若成立,

請給予證明;若不成立,請你寫出正確結(jié)論再給予證明.

(3).如圖3,將圖2中的 AB=AC改變成AB=kAC,正方形ADEF改成矩形ADEF,且AD=kAF,其它條件不變 ,猜想線段BD與CF之間的關(guān)系,說明理由.

【答案】(1) ①BCCF的位置關(guān)系為:BC⊥CF ;②BC,CD,CF之間的數(shù)量關(guān)系為:BC=CF+CD,證明見解析;(2)結(jié)論①成立,②不成立,BC,CD,CF之間的數(shù)量關(guān)系為BC=CD-CFCD=BC+CF,證明見解析;(3).數(shù)量關(guān)系BD=kCF,位置關(guān)系BC⊥CF,證明見解析.

【解析】

1)利用正方形邊相等,等腰三角形,證明ABD AFC全等,再證明∠FCB=90°;

2)解題方法參考(1);

3)參考(1)題原理,證明ABD AFC相似,可以證明BD=kCF,

解:(1)AB=AC,AD=AF,

BAD+∠DAC=∠FAC+∠DAC,

BAD=∠CAF,

ABD AFC,

ABD=∠ACF.

.

BCCF

C=BC+CF.

2)AB=AC,AD=AF,

BAD+∠DAC=∠FAC+∠DAC,

BAD=∠CAF,

ABD AFC,

ADB=∠AFC.

. BC⊥CF

結(jié)論①成立,②不成立,

CD=BC+CF.

3)AB=kACAD=kAF,

BAD+∠DAC=∠FAC+∠DAC,

BAD=∠CAF,

ABD AFC,

BD=kCF.

ADB=∠AFC.

.

BCCF.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊△ABC中,DBC邊上一點(diǎn),EAC邊上一點(diǎn),且∠ADB+EDC=120°.

1)求證:△ABD∽△DCE

2)若CD=12,CE=3,求△ABC的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為4cm,點(diǎn)E,F分別是BC,CD的中點(diǎn),連結(jié)BF,DE,則圖中陰影部分的面積是________cm2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小夏同學(xué)從家到學(xué)校有,兩條不同的公交線路.為了解早高峰期間這三條線路上的公交車從甲地到乙地的用時(shí)情況,在每條線路上隨機(jī)選取了500個(gè)班次的公交車,收集了這些班次的公交車用時(shí)(單位:分鐘)的數(shù)據(jù),統(tǒng)計(jì)如下:

公交車用時(shí)

頻數(shù)

公交車路線

總計(jì)

59

151

166

124

500

43

57

149

251

500

據(jù)此估計(jì),早高峰期間,乘坐線路用時(shí)不超過35分鐘的概率為__________,若要在40分鐘之內(nèi)到達(dá)學(xué)校,應(yīng)盡量選擇乘坐__________(填)線路.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB6,AC8,BC10,P為邊BC上一動(dòng)點(diǎn)(且點(diǎn)P不與點(diǎn)B、C重合),PEABE,PFACF,MEF中點(diǎn).設(shè)AM的長為x,則x的取值范圍是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC的三個(gè)頂點(diǎn)都在邊長為1的小正方形組成的網(wǎng)格的格點(diǎn)上,以點(diǎn)O為原點(diǎn)建立直角坐標(biāo)系,回答下列問題:

(1)將ABC先向上平移5個(gè)單位,再向右平移1個(gè)單位得到△A1B1C1,畫出△A1B1C1,并直接寫出A1的坐標(biāo)   ;

(2)將△A1B1C1繞點(diǎn)(0,﹣1)順時(shí)針旋轉(zhuǎn)90°得到△A2B2C2,畫出A2B2C2;

(3)觀察圖形發(fā)現(xiàn),A2B2C2是由ABC繞點(diǎn)   順時(shí)針旋轉(zhuǎn)   度得到的.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)yy的圖象上分別有一點(diǎn)AB,且ABx軸,ADx軸于D,BCx軸于C,若矩形ABCD的面積為8,則ba=( 。

A.8B.8C.4D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面內(nèi)容,并按要求解決問題:

問題:在平面內(nèi),已知分別有2個(gè)點(diǎn),3個(gè)點(diǎn),4個(gè)點(diǎn),5個(gè)點(diǎn),,個(gè)點(diǎn),其中任意三個(gè)點(diǎn)都不在同一條直線上經(jīng)過每兩點(diǎn)畫一條直線,它們可以分別畫多少條直線?

探究:為了解決這個(gè)問題,希望小組的同學(xué)們,設(shè)計(jì)了如下表格進(jìn)行探究:(為了方便研究問題,圖中每條線段表示過線段兩端點(diǎn)的一條直線)

點(diǎn)數(shù)

2

3

4

5

示意圖

直線條數(shù)

1

請解答下列問題:

1)請幫助希望小組歸納,并直接寫出結(jié)論:當(dāng)平面內(nèi)有個(gè)點(diǎn)時(shí),直線條數(shù)為______;

2)若某同學(xué)按照本題中的方法,共畫了28條直線,求該平面內(nèi)有多少個(gè)已知點(diǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】給出如下定義:對于⊙O的弦MN和⊙O外一點(diǎn)PM,O,N三點(diǎn)不共線,且點(diǎn)P,O在直線MN的異側(cè)),當(dāng)∠MPN+∠MON180°時(shí),則稱點(diǎn)P是線段MN關(guān)于點(diǎn)O的關(guān)聯(lián)點(diǎn).圖1是點(diǎn)P為線段MN關(guān)于點(diǎn)O的關(guān)聯(lián)點(diǎn)的示意圖.

在平面直角坐標(biāo)系xOy中,⊙O的半徑為1

1)如圖2,已知M),N,﹣),在A1,0),B1,1),C,0)三點(diǎn)中,是線段MN關(guān)于點(diǎn)O的關(guān)聯(lián)點(diǎn)的是   ;

2)如圖3,M0,1),N,﹣),點(diǎn)D是線段MN關(guān)于點(diǎn)O的關(guān)聯(lián)點(diǎn).

①∠MDN的大小為   

②在第一象限內(nèi)有一點(diǎn)Em,m),點(diǎn)E是線段MN關(guān)于點(diǎn)O的關(guān)聯(lián)點(diǎn),判斷△MNE的形狀,并直接寫出點(diǎn)E的坐標(biāo);

③點(diǎn)F在直線y=﹣x+2上,當(dāng)∠MFN≥∠MDN時(shí),求點(diǎn)F的橫坐標(biāo)x的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案