【題目】如圖,△ABC∽△DEC,CA=CB,且點(diǎn)EAB的延長(zhǎng)線上.

(1)求證:AE=BD;

(2)求證:△BOE∽△COD;

(3)已知CD=10,BE=5,OD=6,求OC的長(zhǎng).

【答案】(1)詳見解析;(2)詳見解析;(3)CO=7.

【解析】

(1)利用相似三角形的性質(zhì):對(duì)應(yīng)邊的比值相等可證明CE=CD,再根據(jù)全等三角形的判定方法可證明△ACE≌△CBD,進(jìn)而證明AE=BD;
(2)利用有兩對(duì)角相等的兩三角形相似即可證明:△BOE∽△COD.
(3)根據(jù)相似三角形的性質(zhì)解答即可.

證明:(1)∵△ABC∽△DEC,CA=CB,

∴CE=CD,∠ACB=∠ECD,

∠ACB+∠BCE=∠ECD+∠BCE,

∴∠ACE=∠BCD,

在△ACE和△BCD中,,

∴△ACE≌△BCD(SAS),

∴AE=BD;

(2)∵△ACE≌△BCD.

∴∠AEC=∠BDC,

∵∠DOC=∠EOB,

∴△COD∽△BOE,

(3)∵△BOE∽△COD.

=,

∵CD=10,BE=5, OD=6,

=

∴OE=3

∴CO=CE﹣OE=CD﹣OE=10﹣3=7.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知:關(guān)于x的二次函數(shù)的圖象與x軸交于點(diǎn)A(1,0)和點(diǎn)B,與y軸交于點(diǎn)C(0,3),拋物線的對(duì)稱軸與x軸交于點(diǎn)D.

(1)求二次函數(shù)的表達(dá)式;

(2)y軸上是否存在一點(diǎn)P,使PBC為等腰三角形.若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);

(3)有一個(gè)點(diǎn)M從點(diǎn)A出發(fā),以每秒1個(gè)單位的速度在AB上向點(diǎn)B運(yùn)動(dòng),另一個(gè)點(diǎn)N從點(diǎn)D與點(diǎn)M同時(shí)出發(fā),以每秒2個(gè)單位的速度在拋物線的對(duì)稱軸上運(yùn)動(dòng),當(dāng)點(diǎn)M 達(dá)點(diǎn)B時(shí),點(diǎn)M、N同時(shí)停止運(yùn)動(dòng),問(wèn)點(diǎn)M、N運(yùn)動(dòng)到何處時(shí),MNB面積最大,試求出最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店經(jīng)銷一種紀(jì)念品,11月份的營(yíng)業(yè)額為2 000元.為擴(kuò)大銷售,12月份該商店對(duì)這種紀(jì)念品打九折銷售,結(jié)果銷售量增加20件,營(yíng)業(yè)額增加700元.

1)求這種紀(jì)念品11月份的銷售單價(jià);

211月份該商店銷售這種商品_______件;

3)若11月份銷售這種紀(jì)念品獲利800元,求12月份銷售這種紀(jì)念品獲利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正方形DEFG的頂點(diǎn)D、E在△ABC的邊BC上,頂點(diǎn)G、F分別在邊AB、AC上,如果BC=5,ABC的面積是10,那么這個(gè)正方形的邊長(zhǎng)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,的平分線相交于點(diǎn),過(guò),交于點(diǎn),交于點(diǎn).,則線段的長(zhǎng)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形中,,點(diǎn)從點(diǎn)出發(fā),以每秒一個(gè)單位的速度沿的方向運(yùn)動(dòng);同時(shí)點(diǎn)從點(diǎn)出發(fā),以每秒2個(gè)單位的速度沿的方向運(yùn)動(dòng),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)后兩點(diǎn)都停止運(yùn)動(dòng).設(shè)兩點(diǎn)運(yùn)動(dòng)的時(shí)間為.

1)當(dāng)______時(shí),兩點(diǎn)停止運(yùn)動(dòng);

2)當(dāng)為何值時(shí),是等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知邊長(zhǎng)為6的等邊中,是高所在直線上的一個(gè)動(dòng)點(diǎn),連接,將線段繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到,連接,則在點(diǎn)運(yùn)動(dòng)的過(guò)程中,當(dāng)線段長(zhǎng)度的最小值時(shí),的長(zhǎng)度為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線 x軸交于點(diǎn)A和點(diǎn)B(1,0),與y軸交于點(diǎn)C(0,3),其對(duì)稱軸=–1,P為拋物線上第二象限的一個(gè)動(dòng)點(diǎn).

(1)求拋物線的解析式并寫出其頂點(diǎn)坐標(biāo);

(2)當(dāng)點(diǎn)P的縱坐標(biāo)為2時(shí),求點(diǎn)P的橫坐標(biāo);

(3)當(dāng)點(diǎn)P在運(yùn)動(dòng)過(guò)程中,求四邊形PABC面積最大時(shí)的值及此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線l//AB,lAB之間的距離為2C、D是直線l上兩個(gè)動(dòng)點(diǎn)(點(diǎn)CD點(diǎn)的左側(cè)),且AB=CD=5.連接AC、BCBD,將ABC沿BC折疊得到ABC.下列說(shuō)法:①四邊形ABDC的面積始終為10;②當(dāng)AD重合時(shí),四邊形ABDC是菱形;③當(dāng)AD不重合時(shí),連接A、D,則∠CAD+BC A′=180°;④若以A、C、B、D為頂點(diǎn)的四邊形為矩形,則此矩形相鄰兩邊之和為37.其中正確的是( )

A. ①②③④B. ①③④C. ①②④D. ①②③

查看答案和解析>>

同步練習(xí)冊(cè)答案