【題目】如圖,拋物線(xiàn) x軸交于點(diǎn)A和點(diǎn)B(1,0),與y軸交于點(diǎn)C(0,3),其對(duì)稱(chēng)軸=–1,P為拋物線(xiàn)上第二象限的一個(gè)動(dòng)點(diǎn).

(1)求拋物線(xiàn)的解析式并寫(xiě)出其頂點(diǎn)坐標(biāo);

(2)當(dāng)點(diǎn)P的縱坐標(biāo)為2時(shí),求點(diǎn)P的橫坐標(biāo);

(3)當(dāng)點(diǎn)P在運(yùn)動(dòng)過(guò)程中,求四邊形PABC面積最大時(shí)的值及此時(shí)點(diǎn)P的坐標(biāo).

【答案】(1)二次函數(shù)的解析式為,頂點(diǎn)坐標(biāo)為(–1,4);(2)點(diǎn)P橫坐標(biāo)為–1;(3)當(dāng)時(shí),四邊形PABC的面積有最大值,點(diǎn)P().

【解析】試題分析:1)已知拋物線(xiàn) 軸交于點(diǎn)A和點(diǎn)B(1,0),與y軸交于點(diǎn)C(0,3),其對(duì)稱(chēng)軸=﹣1,由此列出方程組,解方程組求得a、b、c的值,即可得拋物線(xiàn)的解析式,把解析式化為頂點(diǎn)式,直接寫(xiě)出頂點(diǎn)坐標(biāo)即可;(2)y=2代入解析式,解方程求得x的值,即可得點(diǎn)P的橫坐標(biāo),從而求得點(diǎn)P的坐標(biāo);(3)設(shè)點(diǎn)P(,), ,根據(jù)得出四邊形PABCx之間的函數(shù)關(guān)系式,利用二次函數(shù)的性質(zhì)求得x的值,即可求得點(diǎn)P的坐標(biāo).

試題解析:

1)∵拋物線(xiàn) 軸交于點(diǎn)A和點(diǎn)B(1,0),與y軸交于點(diǎn)C(0,3),其對(duì)稱(chēng)軸=﹣1,

 , 解得:,

∴二次函數(shù)的解析式為 =,

∴頂點(diǎn)坐標(biāo)為(﹣1,4)

(2)設(shè)點(diǎn)P(,2),

=2,

解得=﹣1(舍去)或=﹣﹣1,

∴點(diǎn)P(﹣﹣1,2).

(3)設(shè)點(diǎn)P(,), ,

,

∴當(dāng)時(shí),四邊形PABC的面積有最大值.

所以點(diǎn)P().

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一段圓弧與長(zhǎng)度為1的正方形網(wǎng)格的交點(diǎn)是A、B、C.

(1)請(qǐng)完成以下操作:

①以點(diǎn)O為原點(diǎn),垂直和水平方向?yàn)檩S,網(wǎng)格邊長(zhǎng)為單位長(zhǎng),建立平面直角坐標(biāo)系;

②根據(jù)圖形提供的信息,標(biāo)出該圓弧所在圓的圓心D,并連接AD、CD;

(2)請(qǐng)?jiān)?/span>(1)的基礎(chǔ)上,完成下列填空:⊙D的半徑為__________;點(diǎn)(6,–2)在⊙D__________;(填”、“內(nèi)”、“”)ADC的度數(shù)為__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC∽△DEC,CA=CB,且點(diǎn)EAB的延長(zhǎng)線(xiàn)上.

(1)求證:AE=BD;

(2)求證:△BOE∽△COD;

(3)已知CD=10,BE=5,OD=6,求OC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有公共邊,且,,,,的角平分線(xiàn)于點(diǎn),連接.

1)求的度數(shù);

2)若,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,建筑物AB的高為6cm,在其正東方向有個(gè)通信塔CD,在它們之間的地面點(diǎn)M(B,M,D三點(diǎn)在一條直線(xiàn)上)處測(cè)得建筑物頂端A、塔項(xiàng)C的仰角分別為37°60°,在A處測(cè)得塔頂C的仰角為30°,則通信塔CD的高度.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,=1.73,精確到0.1m)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,鈍角的面積為12,最長(zhǎng)邊平分,點(diǎn)、分別是、上的動(dòng)點(diǎn),則的最小值是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等邊中,,現(xiàn)有兩點(diǎn)、分別從點(diǎn)、同時(shí)出發(fā),沿三角形的邊運(yùn)動(dòng),已知點(diǎn)的速度為,點(diǎn)的速度為.當(dāng)點(diǎn)第一次回到點(diǎn)時(shí),點(diǎn)同時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為.

1)當(dāng)為何值時(shí),、兩點(diǎn)重合;

2)當(dāng)點(diǎn)分別在、邊上運(yùn)動(dòng),的形狀會(huì)不斷發(fā)生變化.

①當(dāng)為何值時(shí),是等邊三角形;

②當(dāng)為何值時(shí),是直角三角形;

3)若點(diǎn)、都在邊上運(yùn)動(dòng),當(dāng)存在以為底邊的等腰時(shí),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,O是對(duì)角線(xiàn)ACBD的交點(diǎn),MBC邊上的動(dòng)點(diǎn)(點(diǎn)M不與B,C重合),CNDM,與AB交于點(diǎn)N,連接OM,ON,MN.下列四個(gè)結(jié)論:①△CNB≌△DMC;OM=ON;③△OMN∽△OAD;AN2+CM2=MN2,其中正確結(jié)論的個(gè)數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,對(duì)角線(xiàn)AC,BD交于點(diǎn)O,過(guò)點(diǎn)AAEBC于點(diǎn)E,延長(zhǎng)BCF,使CFBE,連接DF

1)求證:四邊形AEFD是矩形;

2)若AC10,∠ABC60°,則矩形AEFD的面積是   

查看答案和解析>>

同步練習(xí)冊(cè)答案