【題目】如圖,在RtABC中,ABC=90°,以AB為直徑作O,點(diǎn)DO上一點(diǎn),且CD=CB,連接DO并延長(zhǎng)交CB的延長(zhǎng)線(xiàn)于點(diǎn)E,連接OC.

(1) 判斷直線(xiàn)CDO的位置關(guān)系,并說(shuō)明理由;

(2) BE=,DE=3,求O的半徑及AC的長(zhǎng).

【答案】1DC⊙O的切線(xiàn),理由見(jiàn)解析;(2)半徑為1AC=

【解析】

1)欲證明CD是切線(xiàn),只要證明ODCD,利用全等三角形的性質(zhì)即可證明;
2)設(shè)⊙O的半徑為r.在RtOBE中,根據(jù)OE2=EB2+OB2,可得,推出r=1,可得OE=2,即有,可推出,則利用勾股定理和含有30°的直角三角形的性質(zhì),可求得OC=2,再利用勾股定理求出即可解決問(wèn)題;

1)證明:∵CB=CDCO=CO,OB=OD,

∴△OCB≌△OCDSSS),

∴∠ODC=OBC=90°,

ODDC

DC是⊙O的切線(xiàn);

2)解: 設(shè)⊙O的半徑為r

RtOBE中,∵OE2=EB2+OB2,

,

OE=3-1=2

RtABC,

RtBCO,,

RtABC,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,,,邊上的高,,兩邊分別交、于點(diǎn),則( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】實(shí)驗(yàn)數(shù)據(jù)顯示,一般成人喝半斤低度白酒后,1.5小時(shí)內(nèi)其血液中酒精含量(毫克/百毫升)與時(shí)間(時(shí))成正比例;1.5小時(shí)后(包括1.5小時(shí))成反比例。根據(jù)圖中提供的信息,解答下列問(wèn)題:

1)請(qǐng)求出一般成人喝半斤低度白酒后,之間的函數(shù)關(guān)系式及相應(yīng)的自變量取值范圍;

2)按國(guó)家規(guī)定,車(chē)輛駕駛?cè)藛T血液中的酒精含量大于或等于20毫克/百毫升時(shí)屬于酒后駕駛不能駕車(chē)上路,參照上述數(shù)學(xué)模型,假設(shè)某駕駛員晚上21:00在家喝完半斤低度白酒,第二天最早幾點(diǎn)駕車(chē)去上班?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在小正形的邊長(zhǎng)均為1的方格紙中,線(xiàn)段AB,點(diǎn)A,B均在小正方形的頂點(diǎn)上.

(1)在圖①中畫(huà)出平行四邊形ABCD,且四邊形ABCD的面積為6,點(diǎn)C、D均在小正方形的頂點(diǎn)上;

(2)在圖②中畫(huà)出一個(gè)△ABC,點(diǎn)C在小正方形的頂點(diǎn)上,且BCBA,請(qǐng)直接寫(xiě)出∠BCA的余弦值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線(xiàn)x軸于點(diǎn)A,交y軸于點(diǎn)B,點(diǎn)Px軸上一動(dòng)點(diǎn),以點(diǎn)P為圓心,以1個(gè)單位長(zhǎng)度為半徑作P,當(dāng)P與直線(xiàn)AB相切時(shí),點(diǎn)P的坐標(biāo)是______________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列關(guān)于二次函數(shù)的說(shuō)法錯(cuò)誤的是( 。

A.拋物線(xiàn)y=﹣2x2+3x+1的對(duì)稱(chēng)軸是直線(xiàn)

B.函數(shù)y2x2+4x3的圖象的最低點(diǎn)在(﹣1,﹣5

C.二次函數(shù)y=(x+22+2的頂點(diǎn)坐標(biāo)是(﹣2,2

D.點(diǎn)A30)不在拋物線(xiàn)yx22x3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,拋物線(xiàn)經(jīng)過(guò)點(diǎn),且滿(mǎn)足9a+3b+c<0,以下結(jié)論:①a+b0;②4a+c0;③對(duì)于任何x,都有;④.其中正確的結(jié)論是(  )

A.①②③B.①②④C.②③④D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小張準(zhǔn)備給長(zhǎng)方形客廳鋪設(shè)瓷磚,已知客廳長(zhǎng)AB8m,寬BC6m,現(xiàn)將其劃分成一個(gè)長(zhǎng)方形EFGH區(qū)域I和環(huán)形區(qū)域Ⅱ,區(qū)域Ⅰ用甲、乙瓷磚鋪設(shè),其中甲瓷磚鋪設(shè)成的是兩個(gè)全等的菱形圖案,區(qū)域Ⅱ用丙瓷磚鋪設(shè),如圖所示,已知NGH中點(diǎn),點(diǎn)M在邊HE上,HN3HM,設(shè)HMxm).

1)用含x的代數(shù)式表示以下數(shù)量.鋪設(shè)甲瓷磚的面積為   m2,鋪設(shè)丙瓷磚的面積為   m2

2)若甲、乙、丙瓷磚單價(jià)分別為300/m2,200/m2,100/m2,且EFFG+2,鋪設(shè)好整個(gè)客廳,三種瓷磚總價(jià)至少需要多少錢(qián)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)不透明的口袋里裝有紅、白、黃三種顏色的乒乓球(除顏色外其余都相同),其中有白球2個(gè),黃球1個(gè).若從中任意摸出一個(gè)球,這個(gè)球是白球的概率為0.5

1)求口袋中紅球的個(gè)數(shù).

2)從袋中任意摸出一球,放回?fù)u勻后,再摸出一球,則兩次都摸到白球的概率是多少?請(qǐng)你用列表或畫(huà)樹(shù)狀圖的方法說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案