【題目】如圖,矩形ABCD中,BE平分∠ABC交AD于點(diǎn)E,F(xiàn)為BE上一點(diǎn),連接DF,過(guò)F作FG⊥DF交BC于點(diǎn)G,連接BD交FG于點(diǎn)H,若FD = FG, ,BG = 4,則GH的長(zhǎng)為__________.
【答案】
【解析】過(guò)點(diǎn)F作BC的垂線(xiàn),分別交BC、AD于點(diǎn)M、N,則MN⊥AD,過(guò)點(diǎn)A作AP⊥BD于點(diǎn)P,延長(zhǎng)DF交AB于點(diǎn)K,過(guò)點(diǎn)K作KQ⊥BD于點(diǎn)Q,如圖所示。
∵FD⊥FG,
∴∠DFG=90°,
∴∠DFN+∠MFG=90°,
∵∠DNF=90°,
∴∠NDF+∠DFN=90°,
∴∠NDF=∠MFG,
在DNF和△FMG中,
,
∴△DNF≌△FMG(AAS),
∴DN=FM,NF=MG.
∵∠BAD=90°,BE平分∠ABC,
∴∠ABE=∠CBE=45°,
又∵FM⊥BM,
∴FM=BM,
∵BF=,
∴BM=FM=3,MG=BGBM=43=1,
∴NF=MG=1,AB=NM=4,AD=AN+ND=BM+FM=6,
∴BD=.
由面積公式可知:S△ABD=BDAP=ABAD,即AP=4×6,
∴AP=,
∵NF∥AB,
∴△DNF∽△DAK,
∴,
∴AK=2NF=2,DK= =2,DF==.
∴BK=ABAK=42=2,
∵KQ∥AP,
∴△BKQ∽△BAP,
∴,即, ,
∴KQ=,
∴BQ===,
∴DQ=BDBQ==,
∵∠DFH=∠DQK=90°,∠FDH=∠QDK,
∴△DFH∽△DQK,
∴,
即,
∴FH=,
∴GH=FGFH==.
故答案為:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AB=5,BC=4,以A為圓心,3為半徑作圓.試判斷:
①點(diǎn)C與⊙A的位置關(guān)系;②點(diǎn)B與⊙A的位置關(guān)系;③AB中的D點(diǎn)與⊙A的位置關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB∥CD, 若∠C=35,AB是∠FAD的平分線(xiàn).
(1)求∠FAD的度數(shù);
(2)若∠ADB=110,求∠BDE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列語(yǔ)句是命題的有( )
①兩點(diǎn)之間線(xiàn)段最短;②不平行的兩條直線(xiàn)有一個(gè)交點(diǎn);③x 與 y 的和等于 0 嗎?④對(duì)頂角不相等;⑤互補(bǔ)的兩個(gè)角不相等;⑥作線(xiàn)段 AB.
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,圖1是△ABC,圖2是“8字形”(將線(xiàn)段AB、CD相交于點(diǎn)O,連接AD、CB形成的圖形),圖3是一個(gè)五角星形狀,試解答下列問(wèn)題:
(1)圖1的△ABC中,∠A+∠B+∠C=_____,并證明你寫(xiě)出的結(jié)論;(要有推理證明過(guò)程)
(2)圖2的“8字形”中,請(qǐng)直接寫(xiě)出∠A、∠B、∠C、∠D之間的數(shù)量關(guān)系:_____;
(3)若在圖2的條件下,作∠DAB和∠BCD的平分線(xiàn)AP和CP相交于點(diǎn)P,并且與CD、AB分別相交于M、N(如圖4).請(qǐng)直接寫(xiě)出∠P與∠D、∠B之間數(shù)量關(guān)系:____;
(4)圖3中的點(diǎn)A向下移到線(xiàn)段BE上時(shí),請(qǐng)直接寫(xiě)出∠CAD+∠B+∠C+∠D+∠E=____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)學(xué)課上,林老師給出了下列方框中的一道題:
小聰和同桌小明討論后,得出如下解答:
()特殊情況,探索結(jié)論
當(dāng)點(diǎn)為的中點(diǎn)時(shí),如圖,確定線(xiàn)段與的大小關(guān)系,請(qǐng)你直接寫(xiě)出結(jié)論: ______ (填“”“ ”或“”).
()特例啟發(fā),解答問(wèn)題
解:題目中, 與的大小關(guān)系是__________ (填“”“ ”或“”),理由如下:如圖,過(guò)點(diǎn)作,交于點(diǎn),(請(qǐng)你繼續(xù)完成接下來(lái)的解題過(guò)程).
()拓展討論,設(shè)計(jì)新題
①互換林老師所給題的條件和結(jié)論,即:如圖在等邊三角形中,點(diǎn)在上,點(diǎn)在的延長(zhǎng)線(xiàn)上,且,試確定線(xiàn)段與的大小關(guān)系,并說(shuō)明理由.
②在等邊三角形中,點(diǎn)在直線(xiàn)上,點(diǎn)在直線(xiàn)上,且,若的邊長(zhǎng)為, ,求的長(zhǎng)為_(kāi)_________(請(qǐng)你直接寫(xiě)出結(jié)果).
如圖,在等邊三角形中,點(diǎn)在
上,點(diǎn)在的延長(zhǎng)線(xiàn)上,且,
試確定線(xiàn)段與的大小關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,AD平分∠BAC,DE⊥AB,DF⊥AC,E、F為垂足,則下列四個(gè)結(jié)論:①∠DEF=∠DFE;②AE=AF;③DA平分∠EDF;④EF垂直平分AD.其中正確的序號(hào)是____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)的圖象過(guò)點(diǎn)(3,0)、(-1,0).
(1)求二次函數(shù)的解析式;
(2)如圖,二次函數(shù)的圖象與軸交于點(diǎn),二次函數(shù)圖象的對(duì)稱(chēng)軸與直線(xiàn)交于點(diǎn),求點(diǎn)的坐標(biāo);
(3)在第一象限內(nèi)的拋物線(xiàn)上有一點(diǎn),當(dāng)的面積最大時(shí),求點(diǎn)的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com