精英家教網 > 初中數學 > 題目詳情

【題目】如圖,將邊長為1的正三角形OAP沿χ軸方向連續(xù)翻轉若干次,點P依次落在點P1,P2P3,…,P2018的位置,則點P2018的橫坐標為( 。

A.2016B.2017C.2018D.2019

【答案】B

【解析】

根據△AOP是邊長為1的正三角形,可得點P的坐標為(﹣,),觀察圖形的變化發(fā)現:P11,0),P21,0),P3,),…進而可得點P2018的橫坐標.

∵△AOP是邊長為1的正三角形,

∴點P的坐標為(﹣),

觀察圖形的變化發(fā)現:

P110),P210),P3,),

P44,0),P54,0),P6,),

P770

發(fā)現規(guī)律:

P3n+13n+1,0),P3n+23n+1,0),P3n+33n+,)(n為自然數).

2017672×3+1,

2018672×3+2,

∴點P2018的橫坐標為2017

故選:B

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,有長為的籬笆,現一面利用墻(墻的最大可用長度)圍成中間隔有一道籬笆的長方形花圃,設花圃的寬,面積為

1)求的函數關系式及自變量的取值范圍;

2)要圍成面積為的花圃,的長是多少米?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在中,,,點在邊上,聯結,將繞著點旋轉,使得點與邊的中點重合,點的對應點是點,則的長等于_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,頂點為M的拋物線yax2+bx+3x軸交于A3,0),B(﹣1,0)兩點,與y軸交于點C

1)求拋物線的表達式;

2)在直線AC的上方的拋物線上,有一點P(不與點M重合),使ACP的面積等于ACM的面積,請求出點P的坐標;

3)在y軸上是否存在一點Q,使得QAM為直角三角形?若存在,請直接寫出點Q的坐標:若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在同一直角坐標系中,拋物線C12與拋物線C22關于軸對稱,C2軸交于A、B兩點,其中點A在點B的左側交y軸于點D

1)求A、B兩點的坐標;

2)對于拋物線C22在第三象限部分的一點P,作PF軸于F,交AD于點E,若E關于PD的對稱點E′恰好落在軸上,求P點坐標;

3)在拋物線C1上是否存在一點G,在拋物線C2上是否存在一點Q,使得以A、BG、Q四點為頂點的四邊形是平行四邊形?若存在,求出G、Q兩點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某校為美化校園,計劃對面積為1800m2的區(qū)域進行綠化,安排甲、乙兩個工程隊完成.已知甲隊每天能完成綠化的面積是乙隊每天能完成綠化的面積的2倍,并且在獨立完成面積為400 m2區(qū)域的綠化時,甲隊比乙隊少用4.

1)求甲、乙兩工程隊每天能完成綠化的面積分別是多少m2?

2)若學校每天需付給甲隊的綠化費用是0.4萬元,乙隊為0.25萬元,要使這次的綠化總費用不超過8萬元,至少應安排甲隊工作多少天?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】我們定義:兩邊平方和等于第三邊平方的2倍的三角形叫做奇異三角形.

例如:某三角形三邊長分別是2,4,,因為,所以這個三角形是奇異三角形.

1)根據定義:“等邊三角形是奇異三角形”這個命題是______命題(填“真”或“假命題”);

2)在中,,,,,且,若是奇異三角形,求

3)如圖,以為斜邊分別在的兩側作直角三角形,且,若四邊形內存在點,使得,

①求證:是奇異三角形;

②當是直角三角形時,求的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】清朝數學家梅文鼎的著作《方程論》中有這樣一道題:山田三畝,場地六畝,共折實田四畝七分;又山田五畝,場地三畝,共折實田五畝五分,問每畝山田折實田多少,

每畝場地折實田多少

譯文為:假如有山田3畝,場地6畝,其產糧相當于實田4.7畝;又山田5畝,場地3畝,其產糧相當于實田5.5畝,問每畝山田和每畝場地產糧各相當于實田多少畝?請你解答.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在直角坐標系中,點A的坐標為(1,0),以OA為邊在第一象限內作正方形OABC,點Dx軸正半軸上一動點(OD>1),連接BD,以BD為邊在第一象限內作正方形DBFE,設M為正方形DBFE的中心,直線MAy軸于點N.如果定義:只有一組對角是直角的四邊形叫做損矩形.

(1)試找出圖1中的一個損矩形;

(2)試說明(1)中找出的損矩形的四個頂點一定在同一個圓上;

(3)隨著點D位置的變化,點N的位置是否會發(fā)生變化?若沒有發(fā)生變化,求出點N的坐標;若發(fā)生變化,請說明理由;

(4)在圖中,過點MMG⊥y軸于點G,連接DN,若四邊形DMGN為損矩形,求D點坐標.

查看答案和解析>>

同步練習冊答案