【題目】某教師為了對學(xué)生零花錢的使用進行教育指導(dǎo),對全班50名學(xué)生每人一周內(nèi)的零花錢數(shù)額進行統(tǒng)計調(diào)查,并繪制了統(tǒng)計表及統(tǒng)計圖,如圖所示.
(1)這50名學(xué)生每人一周內(nèi)的零花錢數(shù)額的平均數(shù)是_______元/人;
(2)如果把全班50名學(xué)生每人一周內(nèi)的零花錢按照不同數(shù)額人數(shù)繪制成扇形統(tǒng)計圖,則一周內(nèi)的零花錢數(shù)額為5元的人數(shù)所占的圓心角度數(shù)是_____度;
(3)一周內(nèi)的零花錢數(shù)額為20元的有5人,其中有2名是女生, 3名是男生,現(xiàn)從這5人中選2名進行個別教育指導(dǎo),請用畫樹狀圖或列表法求出剛好選中2名是一男一女的概率.
【答案】(1)12;(2)72;(3).
【解析】
(1)根據(jù)加權(quán)平均數(shù)的計算公式計算即可;
(2)用樣本中零花錢數(shù)額為5元的人數(shù)所占比例乘以360°即可;
(3)通過列表,求出所有情況及符合題意的情況有多少種,根據(jù)概率的計算公式得出答案即可.
解:(1)平均數(shù)是(元);
故答案為:12;
(2)一周內(nèi)的零花錢數(shù)額為5元的人數(shù)所占的圓心角度數(shù)為:;
故答案為:72;
(3)表格如下:
從這5人中選2名共20種情況,剛好選中2名是一男一女有12種情況,所以剛好選中2名是一男一女的概率為,
故答案為.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,的三個頂點坐標分別為、、.
(1)點關(guān)于坐標原點對稱的點的坐標為______;
(2)將繞著點順時針旋轉(zhuǎn),畫出旋轉(zhuǎn)后得到的;
(3)在(2)中,求邊所掃過區(qū)域的面積是多少?(結(jié)果保留).
(4)若、、三點的橫坐標都加3,縱坐標不變,圖形的位置發(fā)生怎樣的變化?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c與x軸交于A(-1,0),B(3,0)兩點.
(1)求該拋物線的解析式;
(2)求該拋物線的對稱軸以及頂點坐標;
(3)設(shè)(1)中的拋物線上有一個動點P,當(dāng)點P在該拋物線上滑動到什么位置時,滿足S△PAB=8,并求出此時P點的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知等邊△ABC的邊長為2,
(1)如圖1,在邊BC上有一個動點P,在邊AC上有一個動點D,滿足∠APD=60°,求證:△ABP~△PCD
(2)如圖2,若點P在射線BC上運動,點D在直線AC上,滿足∠APD=120°,當(dāng)PC=1時,求AD的長
(3)在(2)的條件下,將點D繞點C逆時針旋轉(zhuǎn)120°到點D',如圖3,求△D′AP的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,,,反比例函數(shù)()過點,()的圖象分別過點、,直線BC交y軸于點D,∥軸.
(1)求和的值;
(2)求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(十九),用四個螺絲將四條不可彎曲的木條圍成一個木框,不計螺絲大小,其中相鄰兩螺絲的距離依序為2、3、4、6,且相鄰兩木條的夾角均可調(diào)整。若調(diào)整木條的夾角時不破壞此木框,則任兩螺絲的距離之最大值為何?
(A) 5 (B) 6 (C) 7 (D) 10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為建設(shè)資源節(jié)約型、環(huán)境友好型社會,切實做好節(jié)能減排工作,我市決定對居民家庭用電實行“階梯電價”.電力公司規(guī)定:居民家庭每月用電量在80千瓦時以下(含80千瓦時,1千瓦時俗稱1度/時,實行“基本電價”;當(dāng)居民家庭月用電量超過80千瓦時,超過部分實行“提高電價”
(1)小張家2017年2月份用電100千瓦時,上繳電費68元;3月份用電120千瓦時,上繳電費88元.求“基本電價”和“提高電價”分別為多少元/千瓦時?
(2)若4月份小張家預(yù)計用電130千瓦時,請預(yù)算小張家4月份應(yīng)上繳的電費.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】折紙是一項有趣的活動,在折紙過程中,我們可以通過研究圖形的性質(zhì)和運動,確定圖形位置等,進一步發(fā)展空間觀念. 今天,就讓我們帶著數(shù)學(xué)的眼光來玩一玩折紙.
實踐操作
如圖1,將矩形紙片ABCD沿對角線AC翻折,使點落在矩形ABCD所在平面內(nèi),C和AD相交于點E,連接D.
解決問題
(1)在圖1中,①D和AC的位置關(guān)系是_____;②將△AEC剪下后展開,得到的圖形是____;
(2)若圖1中的矩形變?yōu)槠叫兴倪呅螘r(AB≠BC),如圖2所示,結(jié)論①和結(jié)論②是否成立,若成立,請?zhí)暨x其中的一個結(jié)論加以證明;若不成立,請說明理由;
拓展應(yīng)用
(3)在圖2中,若∠B=30o,AB=,當(dāng)A⊥AD時,BC的長度為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC在平面直角坐標系中的位置如圖所示,將△ABC沿y軸翻折得到△A1B1C1,再將△A1B1C1繞點O旋轉(zhuǎn)180°得到△A2B2C2;已知A(﹣1,4),B(﹣2,2),C(0,1)
(1)請依次畫出△A1B1C1和△A2B2C2;
(2)若直線A1B2與一個反比例函數(shù)圖象在第一象限交于點A1,試求直線A1B2和這個反比例函數(shù)的解析式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com