【題目】閱讀下面材料:在教學課上,老師提出如下問題:尺規(guī)作圖:作一條線段的垂直平分線.
已知:線段AB.
求作:線段AB的垂直平分線.
小蕓的作法如下:如圖, (1)分別以點A和點B為圓心,大于的長為半徑作弧,兩孤相交于C,D兩點; (2)作直線CD.所以直線CD就是所求作的垂直平分線.
老師說:“小蕓的作法正確.”
請回答:小蕓的作圖依據(jù)是____________________,
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△AOB中,∠AOB=90°,頂點A,B分別在反比例函數(shù)()與()的圖象上,則tan∠BAO的值為( )
A.1B.2C.3D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解我縣中學生參加“新冠肺炎知識”競賽成績的情況,隨機抽查了部分參賽學生的成績,根據(jù)成績分成如下四個組:A:60≤x<70,B:70≤x<80,C:80≤x<90,D:90≤x≤100,并制作出如下的扇形統(tǒng)計圖和直方圖.請根據(jù)圖表信息解答下列問題:
(1)扇形統(tǒng)計圖中的m= ,并在圖中補全頻數(shù)分布直方圖;
(2)小明的成績是所有被抽查學生成績的中位數(shù) ,據(jù)此推斷他的成績在 組;
(3)4個小組每組推薦1人,然后從4人中隨機抽取2人參加頒獎典禮,恰好抽中A,C兩組學生的概率是多少?請列表或畫樹狀圖說明;
(4)若我縣學生人數(shù)為18000人,請根據(jù)上述調(diào)查結(jié)果,估計我縣學生成績在C、D兩組的共多少人.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某體育用品商場采購員要到廠家批發(fā)購買籃球和排球共個,籃球個數(shù)不少于排球個數(shù),付款總額不得超過元,已知兩種球廠的批發(fā)價和商場的零售價如下表. 設該商場采購個籃球.
品名 | 廠家批發(fā)價/元/個 | 商場零售價/元/個 |
籃球 | ||
排球 |
(1)求該商場采購費用(單位:元)與(單位:個)的函數(shù)關(guān)系式,并寫出自變最的取值范圍:
(2)該商場把這個球全都以零售價售出,求商場能獲得的最大利潤;
(3)受原材料和工藝調(diào)整等因素影響,采購員實際采購時,低球的批發(fā)價上調(diào)了元/個,同時排球批發(fā)價下調(diào)了元/個.該體有用品商場決定不調(diào)整商場零售價,發(fā)現(xiàn)將個球全部賣出獲得的最低利潤是元,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形中,,,點為的中點,動點從點出發(fā)沿的方向在和上運動,將矩形沿折疊,點落在點處,當點恰好落在矩形的對角線上時(不與矩形頂點重合),點運動的距離為__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=x2-mx+n圖像的頂點為C(1,-4).
(1)求二次函數(shù)的表達式;
(2)如點A是二次函數(shù)在第四象限內(nèi)圖象上的一動點,過點A作軸,P為垂足,求的最大值;
(3)已知點B(-1,-4),問在的對稱軸上是否存在點Q,使線段QB繞點Q順時針旋轉(zhuǎn)得到線段,且點恰好落在二次函數(shù)圖像上?若存在,求出點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖(1),在中,,,點分別是的中點,過點作直線的垂線段垂足為.點是直線上一動點,作使,連接.
(1)觀察猜想:如圖(2),當點與點重合時,則的值為 .
(2)問題探究:如圖(1),當點與點不重合時,請求出的值及兩直線夾角銳角的度數(shù),并說明理由
(3)問題解決:如圖(3),當點在同一直線上時,請直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:在平行四邊形ABCD中,AB︰BC=3︰2.
(1)根據(jù)條件畫圖:作∠BCD的平分線,交邊AB于點E,取線段BE的中點F,連接DF交CE于點G.
(2)設,那么向量=______.(用向量、表示),并在圖中畫出向量在向量和方向上的分向量.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關(guān)于x的一元二次方程kx2﹣2(k+1)x+k﹣1=0有兩個不相等的實數(shù)根x1,x2.
(1)求k的取值范圍;
(2)是否存在實數(shù)k,使=1成立?若存在,請求出k的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com