【題目】如圖,在△ABC中,BE、CE分別是∠ABC和∠ACB的平分線,過點(diǎn)E作DF∥BC交AB于D,交AC于F,若AB =5,AC =4,則△ADF周長為( ).
A.7B.8C.9D.10
【答案】C
【解析】
根據(jù)角平分線的定義可得∠EBD=∠EBC,∠ECF=∠ECB,再根據(jù)兩直線平行,內(nèi)錯角相等可得∠EBC=∠BED,∠ECB=∠CEF,然后求出∠EBD=∠DEB,∠ECF=∠CEF,再根據(jù)等角對等邊可得ED=BD,EF=CF,即可得出DF=BD+CF;求出△ADF的周長=AB+AC,然后代入數(shù)據(jù)進(jìn)行計(jì)算即可得解.
解:∵E是∠ABC,∠ACB平分線的交點(diǎn),
∴∠EBD=∠EBC,∠ECF=∠ECB,
∵DF∥BC,
∴∠DEB=∠EBC,∠FEC=∠ECB,
∴∠DEB=∠DBE,∠FEC=∠FCE,
∴DE=BD,EF=CF,
∴DF=DE+EF=BD+CF,
即DE=BD+CF,
∴△ADF的周長=AD+DF+AF=(AD+BD)+(CF+AF)=AB+AC,
∵AB=5,AC=4,
∴△ADF的周長=5+4=9,
故選:C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB∥CD,CE、BE的交點(diǎn)為E,現(xiàn)作如下操作:
第一次操作,分別作∠ABE和∠DCE的平分線,交點(diǎn)為E1,
第二次操作,分別作∠ABE1和∠DCE1的平分線,交點(diǎn)為E2,
第三次操作,分別作∠ABE2和∠DCE2的平分線,交點(diǎn)為E3,…,
第n次操作,分別作∠ABEn﹣1和∠DCEn﹣1的平分線,交點(diǎn)為En.
若∠En=1度,那∠BEC等于 度
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A. 了解“孝感市初中生每天課外閱讀書籍時間的情況”最適合的調(diào)查方式是全面調(diào)查
B. 甲乙兩人跳繩各10次,其成績的平均數(shù)相等,,則甲的成績比乙穩(wěn)定
C. 三張分別畫有菱形,等邊三角形,圓的卡片,從中隨機(jī)抽取一張,恰好抽到中心對稱圖形卡片的概率是
D. “任意畫一個三角形,其內(nèi)角和是”這一事件是不可能事件
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=m,P為BC上任意一點(diǎn),則PA2+PBPC的值為( 。
A. m2 B. m2+1 C. 2m2 D. (m+1)2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校決定購買一些跳繩和排球,需要的跳繩數(shù)量是排球數(shù)量的3倍,購買的總費(fèi)用不低于2200元,但不高于2500元.
(1)商場內(nèi)跳繩的售價為20元/根,排球的售價為50元/個,按照學(xué)校所定的費(fèi)用,有幾種購買方案?每種方案中跳繩和排球數(shù)量各為多少?
(2)在(1)的方案中,哪一種方案的總費(fèi)用最少?最少的費(fèi)用是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰三角形ABC的底邊BC長為6,面積是36,腰AC的垂直平分線EF分別交AC,AB邊于E,F點(diǎn).若點(diǎn)D為BC邊的中點(diǎn),點(diǎn)M為線段EF上一動點(diǎn),則△CDM周長的最小值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在梯形ABCD中,AB∥CD,∠D=90°,AD=CD=2,點(diǎn)E在邊AD上(不與點(diǎn)A、D重合),∠CEB=45°,EB與對角線AC相交于點(diǎn)F,設(shè)DE=x.
(1)用含x的代數(shù)式表示線段CF的長;
(2)如果把△CAE的周長記作C△CAE,△BAF的周長記作C△BAF,設(shè)=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出它的定義域;
(3)當(dāng)∠ABE的正切值是時,求AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,山坡上有一棵與水平面垂直的大樹,一場臺風(fēng)過后,大樹被刮傾斜后折斷倒在山坡上,樹的頂部恰好接觸到坡面.已知山坡的坡角∠AEF=23°,量得樹干傾斜角∠BAC=38°,大樹被折斷部分和坡面所成的角∠ADC=60°,AD=4m.
(1)求∠CAE的度數(shù);
(2)求這棵大樹折斷前的高度?
(結(jié)果精確到個位,參考數(shù)據(jù):,,).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB⊥BC,DC⊥BC,E是BC上一點(diǎn),EM⊥EN,∠EMA和∠END的平分線交于點(diǎn)F,則∠F的度數(shù)為( 。
A. 120° B. 135° C. 150° D. 不能確定
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com