從甲,乙兩題中選做一題,如果兩題都做,只以甲題計(jì)分.
題甲:如圖,梯形ABCD中,AD∥BC,點(diǎn)E是邊AD的中點(diǎn),連接BE交AC于點(diǎn)F,BE的延長(zhǎng)線(xiàn)交CD的延長(zhǎng)線(xiàn)于點(diǎn)G.
(1)求證:;
(2)若GE=2,BF=3,求線(xiàn)段EF的長(zhǎng).
題乙:如圖,反比例函數(shù)y=的圖象,當(dāng)-4≤x≤-1時(shí),-4≤y≤-1.
(1)求該反比例函數(shù)的解析式;
(2)若M,N分別在反比例函數(shù)圖象的兩支上,請(qǐng)指出什么情況下線(xiàn)段MN最短(不需證明),并求出線(xiàn)段MN長(zhǎng)度的取值范圍.

【答案】分析:甲:(1)因?yàn)锳D∥BC,所以△GED∽△GBC,所以?xún)扇切蔚膶?duì)應(yīng)邊成比例;又點(diǎn)E是邊AD的中點(diǎn),AE=ED.此題得證
(2)AD∥BC還可以得到△AEF∽△CBF,又AE=ED,通過(guò)等量代換即可得到GE、GB、EF、FB之間的關(guān)系.
乙:(1)圖象經(jīng)過(guò)A(-1,-4),可用待定系數(shù)法求解.
(2)考慮經(jīng)過(guò)原點(diǎn)并且在同一直線(xiàn)上,也就成了線(xiàn)段MN.
解答:甲題:
(1)證明:∵AD∥BC
∴△GED∽△GBC(2分)
(3分)
又∵點(diǎn)E是邊AD的中點(diǎn)
∴AE=ED
(4分)

(2)解:∵AD∥BC
∴△AEF∽△CBF
(5分)
由(1)知
(6分)
設(shè)EF=x,則GB=5+x,
則有(8分)
即x2+5x-6=0
解得:x=1或x=-6,
經(jīng)檢驗(yàn),x=1或x=-6都是原方程的根,但x=-6不合題意,舍去.
故EF的長(zhǎng)為1.(9分)

乙題:
解:(1)因?yàn)榉幢壤瘮?shù)的圖象經(jīng)過(guò)點(diǎn)(-1,-4)
(2分)
∴k=4(3分)
所以反比例函數(shù)的解析式為.(4分)

(2)當(dāng)M,N為-,三象限角平分線(xiàn)與反比例函數(shù)圖象的交點(diǎn)時(shí),線(xiàn)段MN最短.(5分)
將y=x代入
解得,
即M(2,2),N(-2,-2).(6分)
∴OM=2.(7分)
則MN=4.(8分)
又∵M(jìn),N為反比例函數(shù)圖象上的任意兩點(diǎn),
由圖象特點(diǎn)知,線(xiàn)段MN無(wú)最大值,即MN≥4.(9分)
點(diǎn)評(píng):題甲:主要考查相似三角形對(duì)應(yīng)邊成比例,點(diǎn)E是邊AD的中點(diǎn)得AE=ED是突破口
題乙:主要考查待定系數(shù)法求反比例函數(shù)解析式,猜想時(shí)首選經(jīng)過(guò)原點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)從甲、乙兩題中選做一題即可.如果兩題都做,只以甲題計(jì)分.
題甲:如圖,反比例函數(shù)y=
kx
的圖象與一次函數(shù)y=mx+b的圖象交于A(yíng)(1,3),B(n,-1)兩點(diǎn).
(1)求反比例函數(shù)與一次函數(shù)的解析式;
(2)根據(jù)圖象回答:當(dāng)x取何值時(shí),反比例函數(shù)的值大于一次函數(shù)的值.

題乙:如圖,在矩形ABCD中,AB=4,AD=10.直角尺的直角頂點(diǎn)P在A(yíng)D上滑動(dòng)時(shí)(點(diǎn)P與A,D不重合),一直角邊經(jīng)過(guò)點(diǎn)C,另一直角邊AB交于點(diǎn)E.我們知道,結(jié)論“Rt△AEP∽R(shí)t△DPC”成立.
(1)當(dāng)∠CPD=30°時(shí),求AE的長(zhǎng);
(2)是否存在這樣的點(diǎn)P,使△DPC的周長(zhǎng)等于△AEP周長(zhǎng)的2倍?若存在,求出DP的長(zhǎng);若不存在,請(qǐng)說(shuō)精英家教網(wǎng)明理由.
我選做的是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

從甲、乙兩題中選做一題.如果兩題都做,只以甲題計(jì)分.
題甲:若關(guān)于x一元二次方程x2-2(2-k)x+k2+12=0有實(shí)數(shù)根a,β.
(1)求實(shí)數(shù)k的取值范圍;
(2)設(shè)t=
a+β
k
,求t的最小值.
題乙:如圖所示,在矩形ABCD中,P是BC邊上一點(diǎn),連接DP并延長(zhǎng),交AB的延長(zhǎng)線(xiàn)精英家教網(wǎng)于點(diǎn)Q.
(1)若
BP
PC
=
1
3
,求
AB
AQ
的值;
(2)若點(diǎn)P為BC邊上的任意一點(diǎn),求證:
BC
BP
-
AB
BQ
=.
我選做的是
 
題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

從甲、乙兩題中選做一題即可,如果兩題都做,只以甲題計(jì)分.
甲:小東從A地出發(fā)以某一速度向B地走去,同時(shí)小明從B地出發(fā)以另-速度向A地而行.如圖所示,圖中精英家教網(wǎng)的線(xiàn)段y1、y2分別表示小東、小明離B地的距離(千米)與所用時(shí)間(小時(shí))的關(guān)系.
(1)試用文字說(shuō)明:交點(diǎn)P所表示的實(shí)際意義;
(2)試求y1、y2的解析式;
(3)試求出A、B兩地之間的距離.

乙:如圖,?ABCD中,E是BA的延長(zhǎng)線(xiàn)上一點(diǎn),CE與AD交于點(diǎn)F.
(1)求證:△AEF∽△DCF;精英家教網(wǎng)
(2)若AB=2AE,△AEF的面積為2
2
,求?ABCD的面積.

我選做的是
 
題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)本題為選做題,從甲、乙兩題中選做一題即可,如果兩題都做,只以甲題計(jì)分.
選做題:甲:已知關(guān)于x的一元二次方程x2-(2m+1)x+m2+m-2=0
(1)求證:不論m取何值,方程總有兩個(gè)不相等的實(shí)數(shù)根;
(2)若方程的兩個(gè)實(shí)數(shù)根x1、x2滿(mǎn)足
1
x1
+
1
x2
=1+
1
m+2
,求m的值.
乙:如圖,點(diǎn)D是⊙O的直徑CA延長(zhǎng)線(xiàn)上一點(diǎn),點(diǎn)B在⊙O上,且AB=AD=AO.
(1)求證:BD是⊙O的切線(xiàn).
(2)若點(diǎn)E是劣弧BC上一點(diǎn),AE與BC相交于點(diǎn)F,且△BEF的面積為8,cos∠BFA=
2
3
,求△ACF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•峨眉山市二模)選做題:從甲、乙兩題中選做一題,如果兩題都做,只以甲題計(jì)分.
題甲:如圖1,正比例函數(shù)y=-
1
2
x
的圖象與反比例函數(shù)y=
k
x
(k≠0)
在第二象限的圖象交于A(yíng)點(diǎn),過(guò)A點(diǎn)作x軸的垂線(xiàn),垂足為M,已知△OAM的面積為1.
(1)求反比例函數(shù)的解析式;
(2)如果B為反比例函數(shù)圖象上的點(diǎn),且B點(diǎn)的橫坐標(biāo)為-1,在x軸上一點(diǎn)P,使PA+PB最小,求P點(diǎn)的坐標(biāo).
題乙:如圖2,已知AB、AC分別為⊙O的直徑和弦,D為BC的中點(diǎn),DE⊥AC于E,DE=6,AC=16.
(1)求證:DE與⊙O相切;
(2)求直徑AB的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案