(2012•十堰)如圖1,⊙O是△ABC的外接圓,AB是直徑,OD∥AC,且∠CBD=∠BAC,OD交⊙O于點E.
(1)求證:BD是⊙O的切線;
(2)若點E為線段OD的中點,證明:以O(shè)、A、C、E為頂點的四邊形是菱形;
(3)作CF⊥AB于點F,連接AD交CF于點G(如圖2),求
FGFC
的值.
分析:(1)由AB是⊙O的直徑,根據(jù)直徑所對的圓周角為直角得到∠BCA=90°,則∠ABC+∠BAC=90°,而∠CBD=∠BAC,得到∠ABC+∠CBD=90°,即OB⊥BD,根據(jù)切線的判定定理即可得到BD為⊙O的切線;
(2)連CE、OC,BE,根據(jù)直角三角形斜邊上的中線等于斜邊的一半得到BE=OE=ED,則△OBE為等邊三角形,于是∠BOE=60°,又因為AC∥OD,則∠OAC=60°,AC=OA=OE,即有AC∥OE且AC=OE,可得到四邊形OACE是平行四邊形,加上OA=OE,即可得到四邊形OACE是菱形;
(3)由CF⊥AB得到∠AFC=∠OBD=90°,而AC∥OD,則∠CAF=∠DOB,根據(jù)相似三角形的判定易得Rt△AFC∽Rt△OBD,則有
FC
BD
=
AF
OB
,即FC=
BD•AF
OB
,再由FG∥BD易證得△AFG∽△ABD,則
FG
BD
=
AF
AB
,即FG=
BD•AF
AB
,然后求FC與FG的比即可一個定值.
解答:(1)證明:∵AB是⊙O的直徑,
∴∠BCA=90°,
∴∠ABC+∠BAC=90°,
又∵∠CBD=∠BAC,
∴∠ABC+∠CBD=90°,
∴∠ABD=90°,
∴OB⊥BD,
∴BD為⊙O的切線;

(2)證明:連CE、OC,BE,如圖,
∵OE=ED,∠OBD=90°,
∴BE=OE=ED,
∴OB=BE=OE,
∴△OBE為等邊三角形,
∴∠BOE=60°,
又∵AC∥OD,
∴∠OAC=60°,
又∵OA=OC,
∴AC=OA=OE,
∴AC∥OE且AC=OE,
∴四邊形OACE是平行四邊形,
而OA=OE,
∴四邊形OACE是菱形;

(3)解:∵CF⊥AB,
∴∠AFC=∠OBD=90°,
而AC∥OD,
∴∠CAF=∠DOB,
∴Rt△AFC∽Rt△OBD,
FC
BD
=
AF
OB
,即FC=
BD•AF
OB
,
又∵FG∥BD,
∴△AFG∽△ABD,
FG
BD
=
AF
AB
,即FG=
BD•AF
AB
,
FC
FG
=
AB
OB
=2,
FG
FC
=
1
2
點評:本題考查了圓的綜合題:過半徑的外端點與半徑垂直的直線是圓的切線;直徑所對的圓周角為直角;熟練掌握等邊三角形的性質(zhì)和菱形的判定;運用相似三角形的判定與性質(zhì)解決線段之間的關(guān)系.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2012•十堰)如圖,O是正△ABC內(nèi)一點,OA=3,OB=4,OC=5,將線段BO以點B為旋轉(zhuǎn)中心逆時針旋轉(zhuǎn)60°得到線段BO′,下列結(jié)論:①△BO′A可以由△BOC繞點B逆時針旋轉(zhuǎn)60°得到;②點O與O′的距離為4;③∠AOB=150°;④S四邊形AOBO′=6+3
3
;⑤S△AOC+S△AOB=6+
9
4
3
.其中正確的結(jié)論是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•十堰)如圖是某體育館內(nèi)的頒獎臺,其主視圖是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•十堰)如圖,直線BD∥EF,AE與BD交于點C,若∠ABC=30°,∠BAC=75°,則∠CEF的大小為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•十堰)如圖,梯形ABCD中,AD∥BC,點M是AD的中點,且MB=MC,若AD=4,AB=6,BC=8,則梯形ABCD的周長為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•十堰)如圖,矩形ABCD中,AB=2,AD=4,AC的垂直平分線EF交AD于點E、交BC于點F,則EF=
5
5

查看答案和解析>>

同步練習冊答案