【題目】已知拋物線(xiàn)C:,直線(xiàn)l:y=kx(k>0),當(dāng)k=1時(shí),拋物線(xiàn)C與直線(xiàn)l只有一個(gè)公共點(diǎn).
(1)求m的值;
(2)若直線(xiàn)l與拋物線(xiàn)C交于不同的兩點(diǎn)A,B,直線(xiàn)l與直線(xiàn)l1:y=﹣3x+b交于點(diǎn)P,且,求b的值;
(3)在(2)的條件下,設(shè)直線(xiàn)l1與y軸交于點(diǎn)Q,問(wèn):是否在實(shí)數(shù)k使S△APQ=S△BPQ?若存在,求k的值,若不存在,說(shuō)明理由.
【答案】(1)4;(2)8;(3)不存在.
【解析】
試題分析:(1)兩圖象有一個(gè)交點(diǎn),則對(duì)應(yīng)的方程組有一組解,即△=0,代入計(jì)算即可求出m的值;
(2)作出輔助線(xiàn),得到△OAC∽△OPD,+=2,同理+=2,AC,BE是x2﹣(k+3)x+4=0兩根,即可;
(3)由S△APQ=S△BPQ得到AC+BE=2PD,建立方程(k+3)2=16即可.
試題解析:(1)當(dāng)k=1時(shí),拋物線(xiàn)C與直線(xiàn)l只有一個(gè)公共點(diǎn),∴直線(xiàn)l解析式為y=x,∵,∴,∴,∴△=16﹣4m=0,∴m=4;
(2)如圖,分別過(guò)點(diǎn)A,P,B作y軸的垂線(xiàn),垂足依次為C,D,E,則△OAC∽△OPD,∴.
同理,.
∵,∴,∴,∴,即.
解方程組:,得x=,即PD=.
由方程組消去y,得.
∵AC,BE是以上一元二次方程的兩根,∴AC+BE=k+3,AC×BE=4,∴.解得b=8.
(3)不存在.理由如下:
假設(shè)存在,當(dāng)S△APQ=S△BPQ時(shí),有AP=PB,于是PD﹣AC=PE﹣PD,即AC+BE=2PD.
由(2)可知AC+BE=k+3,PD=,∴k+3=2×,即.
解得k=1(舍去k=﹣7).
當(dāng)k=1時(shí),A,B兩點(diǎn)重合,△BQA不存在,∴不存在實(shí)數(shù)k使S△APQ=S△BPQ.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AD是高,AE、BF是角平分線(xiàn),它們相交于點(diǎn)O,∠CAB=50°,∠C=60°,求∠DAE和∠BOA的度數(shù)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AD是BC邊上的高,∠B=45°,∠C=60°,AD=2,求BC的長(zhǎng).(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若點(diǎn)(-1,m)和點(diǎn)(1,n)在一次函數(shù)y=-3x+6的圖像上,則m______n(填“>”“<”或“=”).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:
(1)如果∠1=∠4,根據(jù) , 可得AB∥CD;
(2)如果∠1=∠2,根據(jù) , 可得AB∥CD;
(3)如果∠1+∠3=180,根據(jù) , 可得AB∥CD .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,對(duì)稱(chēng)軸為直線(xiàn)x=的拋物線(xiàn)經(jīng)過(guò)B(2,0)、C(0,4)兩點(diǎn),拋物線(xiàn)與x軸的另一交點(diǎn)為A.
(1)求拋物線(xiàn)的解析式;
(2)若點(diǎn)P為第一象限內(nèi)拋物線(xiàn)上的一點(diǎn),設(shè)四邊形COBP的面積為S,求S的最大值;
(3)如圖2,若M是線(xiàn)段BC上一動(dòng)點(diǎn),在x軸是否存在這樣的點(diǎn)Q,使△MQC為等腰三角形且△MQB為直角三角形?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】七年級(jí)進(jìn)行法律知識(shí)競(jìng)賽,共有30道題,答對(duì)一道題得4分,不答或答錯(cuò)一道題扣2分.
(1)小紅同學(xué)參加了競(jìng)賽,成績(jī)是90分,請(qǐng)問(wèn)小紅在競(jìng)賽中答對(duì)了多少道題?
(2)小明也參加了競(jìng)賽,考完后他說(shuō):“這次競(jìng)賽我一定能拿到100分.”請(qǐng)問(wèn)小明有沒(méi)有可能拿到100分?試用方程的知識(shí)來(lái)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)直線(xiàn)l1和直線(xiàn)l2平行,且l1和l2間的距離為a.如果線(xiàn)段AB在l1的右側(cè),并設(shè)AB關(guān)于l1的對(duì)稱(chēng)圖形是A′B′,而A′B′關(guān)于l2的對(duì)稱(chēng)圖形是A″B″(如圖),那么,線(xiàn)段AB和A″B″有什么關(guān)系?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com