【題目】如圖,在△ABC中,以AB為直徑的⊙O分別交AC,BC于點(diǎn)D,E.連接ED,若ED=EC.
(1)求證:AB=AC;
(2)填空:①若AB=6,CD=4,則BC=;
②連接OD,當(dāng)∠A的度數(shù)為時(shí),四邊形ODEB是菱形.
【答案】
(1)
證明:∵ED=EC,
∴∠EDC=∠C,
∵∠EDC=∠B,
∴∠B=∠C,
∴AB=AC;
(2)2 ;60°
【解析】(2)解:①連接AE,
∵AB為直徑,
∴AE⊥BC,
由(1)知AB=AC=6,
∵∠C=∠C,∠CDE=∠B,
∴△CDE∽△CBA,
∴ = ,
∴ = ,
∴BC=2 ,
所以答案是:2 ;(3)當(dāng)∠A=60°時(shí),四邊形ODEB是菱形,
∵∠A=60°,
∴∠BAE=30°,
∵∠AEB=90°,
∴BE= AD=BO,
∴BE=DE=OB=OD,
∴四邊形ODEB是菱形,
所以答案是:60°.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用菱形的判定方法和圓周角定理的相關(guān)知識(shí)可以得到問題的答案,需要掌握任意一個(gè)四邊形,四邊相等成菱形;四邊形的對(duì)角線,垂直互分是菱形.已知平行四邊形,鄰邊相等叫菱形;兩對(duì)角線若垂直,順理成章為菱形;頂點(diǎn)在圓心上的角叫做圓心角;頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角;一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=﹣x2+4x的頂點(diǎn)為A,與x軸分別交于O、B兩點(diǎn),過頂點(diǎn)A分別作AC⊥x軸于點(diǎn)C,AD⊥y軸于點(diǎn)D,連接BD,交AC于點(diǎn)E,則△ADE與△BCE的面積和為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=﹣x2+ax+b的圖象與y軸交于點(diǎn)A(0,﹣2),與x軸交于點(diǎn)B(1,0)和點(diǎn)C,D(m,0)(m>2)是x軸上一點(diǎn).
(1)求二次函數(shù)的解析式;
(2)點(diǎn)E是第四象限內(nèi)的一點(diǎn),若以點(diǎn)D為直角頂點(diǎn)的Rt△CDE與以A,O,B為頂點(diǎn)的三角形相似,求點(diǎn)E坐標(biāo)(用含m的代數(shù)式表示);
(3)在(2)的條件下,拋物線上是否存在一點(diǎn)F,使得四邊形BCEF為平行四邊形?若存在,請(qǐng)求出點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】初三年級(jí)教師對(duì)試卷講評(píng)課中學(xué)生參與的深度與廣度進(jìn)行評(píng)價(jià)調(diào)查,其評(píng)價(jià)項(xiàng)目為主動(dòng)質(zhì)疑、獨(dú)立思考、專注聽講、講解題目四項(xiàng).評(píng)價(jià)組隨機(jī)抽取了若干名初中學(xué)生的參與情況,繪制成如圖所示的頻數(shù)分布直方圖和扇形統(tǒng)計(jì)圖(均不完整),請(qǐng)根據(jù)圖中所給信息解答下列問題:
(1)在這次評(píng)價(jià)中,一共抽查了名學(xué)生;
(2)在扇形統(tǒng)計(jì)圖中,項(xiàng)目“主動(dòng)質(zhì)疑”所在的扇形的圓心角的度數(shù)為度;
(3)請(qǐng)將頻數(shù)分布直方圖補(bǔ)充完整;
(4)如果全市有6000名初三學(xué)生,那么在試卷評(píng)講課中,“獨(dú)立思考”的初三學(xué)生約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A在雙曲線y= 上,點(diǎn)B在雙曲線y= (k≠0)上,AB∥x軸,分別過點(diǎn)A、B向x軸作垂線,垂足分別為D、C,若矩形ABCD的面積是9,則k的值為( )
A.4
B.5
C.9
D.13
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,直線y= x+m與x軸、y軸分別交于點(diǎn)A和點(diǎn)B(0,﹣1),拋物線y= x2+bx+c經(jīng)過點(diǎn)B,點(diǎn)C的橫坐標(biāo)為4.
(1)請(qǐng)直接寫出拋物線的解析式;
(2)如圖2,點(diǎn)D在拋物線上,DE∥y軸交直線AB于點(diǎn)E,且四邊形DFEG為矩形,設(shè)點(diǎn)D的橫坐標(biāo)為x(0<x<4),矩形DFEG的周長為l,求l與x的函數(shù)關(guān)系式以及l(fā)的最大值;
(3)將△AOB繞平面內(nèi)某點(diǎn)M旋轉(zhuǎn)90°或180°,得到△A1O1B1 , 點(diǎn)A、O、B的對(duì)應(yīng)點(diǎn)分別是點(diǎn)A1、O1、B1 . 若△A1O1B1的兩個(gè)頂點(diǎn)恰好落在拋物線上,那么我們就稱這樣的點(diǎn)為“落點(diǎn)”,請(qǐng)直接寫出“落點(diǎn)”的個(gè)數(shù)和旋轉(zhuǎn)180°時(shí)點(diǎn)A1的橫坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在平行四邊形ABCD中,AE是BC邊上的高,將△ABE沿BC方向平移,使點(diǎn)E與點(diǎn)C重合,得△GFC.
(1)求證:BE=DG;
(2)若∠B=60°,當(dāng)AB與BC滿足什么數(shù)量關(guān)系時(shí),四邊形ABFG是菱形?證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在Rt△ACB中,∠C=90°,AC=3,BC=2,AD為中線.
(1)比較∠BAD和∠DAC的大小.
(2)求sin∠BAD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD//BC,∠ABC=∠ADC=90°,對(duì)角線AC,BD交于點(diǎn)O,DE平分∠ADC交BC于點(diǎn)E,連接OE.
(1)求證:四邊形ABCD是矩形;
(2)若AB=2,求△OEC的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com