【題目】我們知道,任意一個(gè)正整數(shù)n都可以進(jìn)行這樣的分解:n=p×q(p,q是正整數(shù),且p≤q),在n的所有這種分解中,如果p,q兩因數(shù)之差的絕對(duì)值最小,我們就稱p×q是n的最佳分解.并規(guī)定:F(n)=

例如12可以分解成1×12,2×6或3×4,因?yàn)?2﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=

⑴如果一個(gè)正整數(shù)m是另外一個(gè)正整數(shù)n的平方,我們稱正整數(shù)m是完全平方數(shù).

求證:對(duì)任意一個(gè)完全平方數(shù)m,總有F(m)=1;

⑵如果一個(gè)兩位正整數(shù)t,t =10x+y(1≤x≤y≤9,x,y為自然數(shù)),交換其個(gè)位上的數(shù)與十位上的數(shù)得到的新數(shù)減去原來(lái)的兩位正整數(shù)所得的差為54,那么我們稱這個(gè)數(shù)t為“吉祥數(shù)”,求所有的“吉祥數(shù)”;

⑶在⑵所得“吉祥數(shù)”中,求 F(t)的最大值.

【答案】(1)見解析;(2)17,28,39;(3)

【解析】(1)對(duì)任意一個(gè)完全平方數(shù)m,設(shè)為正整數(shù)),找出m的最佳分解,確定出的值即可;
(2)設(shè)交換t的個(gè)位上數(shù)與十位上的數(shù)得到的新數(shù)為t,則,根據(jù)吉祥數(shù)的定義確定出xy的關(guān)系式,進(jìn)而求出所求即可;
(3)利用吉祥數(shù)的定義分別求出各自的值,進(jìn)而確定出的最大值即可.

(1)對(duì)任意一個(gè)完全平方數(shù)m,設(shè)m=n2(n為正整數(shù)),
|n-n|=0,
n×nm的最佳分解,
∴對(duì)任意一個(gè)完全平方數(shù)m,總有Fm)==1;
(2)設(shè)交換t的個(gè)位上的數(shù)與十位上的數(shù)得到的新數(shù)為t,則
t吉祥數(shù)”,


x,y為自然數(shù),
吉祥數(shù)有:17,28,39,
(3)F(17)=,F(xiàn)(28)=,F(xiàn)(39)=
,
∴所有吉祥數(shù)中,Ft)的最大值是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若點(diǎn)Aa,a+5)在x軸上,則點(diǎn)A到原點(diǎn)的距離為( 。

A.5B.0C.5D.不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線ykxb經(jīng)過(guò)點(diǎn)A(5,0)B(1,4)

1)求直線AB的表達(dá)式;

2)若直線y2x4與直線AB相交于點(diǎn)C,求點(diǎn)C的坐標(biāo);

3)根據(jù)圖象,寫出關(guān)于x的不等式kxb2x4>0的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中, ,點(diǎn)是直線上一點(diǎn)(不與重合),以為一邊在右側(cè),使,連接

(1)如圖1,當(dāng)點(diǎn)在線段上,如果,則 度;

(2)設(shè)

①如圖2,當(dāng)點(diǎn)在線段上移動(dòng),則之間有怎樣的數(shù)量關(guān)系?請(qǐng)說(shuō)明理由;

②當(dāng)點(diǎn)在直線上移動(dòng),則之間有怎樣的數(shù)量關(guān)系?請(qǐng)畫出圖形并直接寫出相應(yīng)的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)不透明的袋子中裝有僅顏色不同的10個(gè)小球,其中紅球4個(gè),黑球6個(gè).

(1)先從袋子中取出m(m>1)個(gè)紅球,再?gòu)拇又须S機(jī)摸出1個(gè)球,將摸出黑球記為事件A,請(qǐng)完成下列表格;

(2)先從袋子中取出m個(gè)紅球,再放入m個(gè)一樣的黑球并搖勻,隨機(jī)摸出1個(gè)黑球的概率等于,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們用[a]表示不大于a的最大整數(shù)例如[2.5]2,[3]3,[2.5]=-3;<a>表示大于a的最小整數(shù),例如<2.5>3,<4>5,<1.5>=-1.

解決下列問題

1[4.5]___,<3.5>___;

2[x]2,x的取值范圍是___;<y>=-1,則y的取值范圍是___.

3已知x,y滿足方程組xy的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】今年4月,我市某中學(xué)舉行了“愛我中國(guó)朗誦比賽”活動(dòng),根據(jù)學(xué)生的成績(jī)劃分為A、B、C、D四個(gè)等級(jí),并繪制了如下兩種不完整的統(tǒng)計(jì)圖.根據(jù)圖中提供的信息,回答下列問題:
(1)參加朗誦比賽的學(xué)生共有人,并把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)扇形統(tǒng)計(jì)圖中,m= , n=;C等級(jí)對(duì)應(yīng)扇形的圓心角為度;
(3)學(xué)校準(zhǔn)備從獲A等級(jí)的學(xué)生中隨機(jī)選取2人,參加市舉辦的朗誦比賽,請(qǐng)利用列表法或樹形圖法,求獲A等級(jí)的小明參加市朗誦比賽的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】畫出函數(shù)的圖象.

1)函數(shù)的自變量x的取值范圍是________

2)列表(把表格補(bǔ)充完整)

x

……

-2

-1

0

1

2

3

4

……

y

3)描點(diǎn)、連線

4)結(jié)合圖象,寫出函數(shù)的一條性質(zhì)________________________________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,延長(zhǎng)AB至點(diǎn)D,使DB=AB,連接CD,以CD為直角邊作等腰直角三角形CDE,其中∠DCE=90°,連接BE.

1)求證:△ACD≌△BCE;

2) AC=3cm,求BE的長(zhǎng)度.

查看答案和解析>>

同步練習(xí)冊(cè)答案