【題目】在中, ,點是直線上一點(不與重合),以為一邊在 的右側(cè)作,使,連接.
(1)如圖1,當點在線段上,如果,則 度;
(2)設, .
①如圖2,當點在線段上移動,則之間有怎樣的數(shù)量關系?請說明理由;
②當點在直線上移動,則之間有怎樣的數(shù)量關系?請畫出圖形并直接寫出相應的結(jié)論.
【答案】(1)90; (2) ①.②
【解析】試題分析:(1)利用等腰三角形證明ABDACE,所以∠ECA=∠DBA,所以∠DCE=90°.(2)方法類似(1)證明△ABD≌△ACE,所以∠B=∠ACE,再利用角的關系求. (3)同理方法類似(1).
試題解析:
解:(1) 90 度.
∠DAE=∠BAC ,所以∠BAD=∠EAC,AB=AC,AD=AE,所以ABDACE,所以∠ECA=∠DBA,所以∠ECA=90°.
(2)①.
理由:∵∠BAC=∠DAE,
∴∠BAC-∠DAC=∠DAE-∠DAC,即∠BAD=∠CAE,
又AB=AC,AD=AE,
∴△ABD≌△ACE,
∴∠B=∠ACE.∴∠B+∠ACB=∠ACE+∠ACB,
∴.∵,
∴.
(3)圖形正確可知 .
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AB=4,∠BAD的平分線與BC的延長線交于點E,與DC交于點F,且點F為邊DC的中點,DG⊥AE,垂足為G,若DG=1,則AE的邊長為( ).
A.2 B.4 C.4 D.8
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】列方程解應用題:
為了提高產(chǎn)品的附加值,某公司計劃將研發(fā)生產(chǎn)的1200件新產(chǎn)品進行精加工后再投放市場.現(xiàn)有甲、乙兩個工廠都具備加工能力,公司派出相關人員分別到這兩個工廠了解情況,獲得如下信息:
信息一:甲工廠單獨加工完成這批產(chǎn)品比乙工廠單獨加工完成這批產(chǎn)品多用10天;
信息二:乙工廠每天加工的數(shù)量是甲工廠每天加工數(shù)量的1.5倍.
根據(jù)以上信息,求甲、乙兩個工廠每天分別能加工多少件新產(chǎn)品.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠ABC和∠ACB的角平分線BE、CF相交于點I,
(1)∠BIC=120°,求∠A的度數(shù)
(2)當∠BIC=135°,則∠A= 。
(3)請你用數(shù)學表達式歸納出∠BIC與∠A的關系式,并說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】用10個球設計一個摸球游戲,使得:
(1)摸到紅球的機會是.
(2)摸到紅球的機會是,摸到黃球的機會是.
(3)你還能設計一個符合下列條件的游戲嗎?為什么?
摸到紅球的機會是,摸到黃球的機會是,摸到綠球的機會是.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為2的正方形ABCD中,G是AD延長線上的一點,且DG=AD,動點M從A點出發(fā),以每秒1個單位的速度沿著A→C→G的路線向G點勻速運動(M不與A,G重合),設運動時間為t秒,連接BM并延長AG于N.
(1)是否存在點M,使△ABM為等腰三角形?若存在,分析點M的位置;若不存在,請說明理由;
(2)當點N在AD邊上時,若BN⊥HN,NH交∠CDG的平分線于H,求證:BN=HN;
(3)過點M分別作AB,AD的垂線,垂足分別為E,F(xiàn),矩形AEMF與△ACG重疊部分的面積為S,求S的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們知道,任意一個正整數(shù)n都可以進行這樣的分解:n=p×q(p,q是正整數(shù),且p≤q),在n的所有這種分解中,如果p,q兩因數(shù)之差的絕對值最小,我們就稱p×q是n的最佳分解.并規(guī)定:F(n)=.
例如12可以分解成1×12,2×6或3×4,因為12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=.
⑴如果一個正整數(shù)m是另外一個正整數(shù)n的平方,我們稱正整數(shù)m是完全平方數(shù).
求證:對任意一個完全平方數(shù)m,總有F(m)=1;
⑵如果一個兩位正整數(shù)t,t =10x+y(1≤x≤y≤9,x,y為自然數(shù)),交換其個位上的數(shù)與十位上的數(shù)得到的新數(shù)減去原來的兩位正整數(shù)所得的差為54,那么我們稱這個數(shù)t為“吉祥數(shù)”,求所有的“吉祥數(shù)”;
⑶在⑵所得“吉祥數(shù)”中,求 F(t)的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】校車安全是近幾年社會關注的重大問題,安全隱患主要是超速和超載.某中學數(shù)學活動小組設計了如下檢測公路上行駛的汽車速度的實驗:先在公路旁邊選取一點C,再在筆直的車道L上確定點D,使CD與L垂直,測得CD的長等于24米,在L上點D的同側(cè)取點A、B,使∠CAD=30°,∠CBD=60°.
(1)求AB的長(結(jié)果保留根號);
(2)已知本路段對校車限速為45千米/小時,若測得某輛校車從A到B用時2秒,這輛校車是否超速?說明理由.(參考數(shù)據(jù): ≈1.73, ≈1.41)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法正確的是( )
A.點P(3,﹣5)到x軸的距離為﹣5
B.在平面直角坐標系內(nèi),(﹣1,2)和(2,﹣1)表示同一個點
C.若x=0,則點P(x,y)在x軸上
D.在平面直角坐標系中,有且只有一個點既在x軸上,又在y軸上
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com