在如圖的直角坐標(biāo)系中,已知點(diǎn)A(2,0)、B(0,-4),將線段AB繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn)90°至AC.
(1)求點(diǎn)C的坐標(biāo);
(2)若拋物線y=-x2+ax+4經(jīng)過(guò)點(diǎn)C.
①求拋物線的解析式;
②在拋物線上是否存在點(diǎn)P(點(diǎn)C除外)使△ABP是以AB為直角邊的等腰直角三角形?若存在,求出所有點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
C的坐標(biāo)為(3,﹣1);
(2)①拋物線的解析式為y=﹣x2+x+2;
②存在點(diǎn)P,△ABP是以AB為直角邊的等腰直角三角形,符合條件的點(diǎn)有P1(﹣1,1),P2(﹣2,﹣1)兩點(diǎn).
解析試題分析:(1)過(guò)點(diǎn)C作CD垂直于x軸,由線段AB繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn)90°至AC,根據(jù)旋轉(zhuǎn)的旋轉(zhuǎn)得到AB=AC,且∠BAC為直角,可得∠OAB與∠CAD互余,由∠AOB為直角,可得∠OAB與∠ABO互余,根據(jù)同角的余角相等可得一對(duì)角相等,再加上一對(duì)直角相等,利用ASA可證明三角形ACD與三角形AOB全等,根據(jù)全等三角形的對(duì)應(yīng)邊相等可得AD=OB,CD=OA,由A和B的坐標(biāo)及位置特點(diǎn)求出OA及OB的長(zhǎng),可得出OD及CD的長(zhǎng),根據(jù)C在第四象限得出C的坐標(biāo);
(2)①由已知的拋物線經(jīng)過(guò)點(diǎn)C,把第一問(wèn)求出C的坐標(biāo)代入拋物線解析式,列出關(guān)于a的方程,求出方程的解得到a的值,確定出拋物線的解析式;
②假設(shè)存在點(diǎn)P使△ABP是以AB為直角邊的等腰直角三角形,分三種情況考慮:(i)A為直角頂點(diǎn),過(guò)A作AP1垂直于AB,且AP1=AB,過(guò)P1作P1M垂直于x軸,如圖所示,根據(jù)一對(duì)對(duì)頂角相等,一對(duì)直角相等,AB=AP1,利用AAS可證明三角形AP1M與三角形ACD全等,得出AP1與P1M的長(zhǎng),再由P1為第二象限的點(diǎn),得出此時(shí)P1的坐標(biāo),代入拋物線解析式中檢驗(yàn)滿足;(ii)當(dāng)B為直角頂點(diǎn),過(guò)B作BP2垂直于BA,且BP2=BA,過(guò)P2作P2N垂直于y軸,如圖所示,同理證明三角形BP2N與三角形AOB全等,得出P2N與BN的長(zhǎng),由P2為第三象限的點(diǎn),寫(xiě)出P2的坐標(biāo),代入拋物線解析式中檢驗(yàn)滿足;(iii)當(dāng)B為直角頂點(diǎn),過(guò)B作BP3垂直于BA,且BP3=BA,如圖所示,過(guò)P3作P3H垂直于y軸,同理可證明三角形P3BH全等于三角形AOB,可得出P3H與BH的長(zhǎng),由P3為第四象限的點(diǎn),寫(xiě)出P3的坐標(biāo),代入拋物線解析式檢驗(yàn),不滿足,綜上,得到所有滿足題意的P的坐標(biāo).
試題解析:(1)過(guò)C作CD⊥x軸,垂足為D,
∵BA⊥AC,∴∠OAB+∠CAD=90°,
又∠AOB=90°,∴∠OAB+∠OBA=90°,
∴∠CAD=∠OBA,又AB=AC,∠AOB=∠ADC=90°,
∴△AOB≌△CDA,又A(1,0),B(0,﹣2),
∴OA=CD=1,OB=AD=2,
∴OD=OA+AD=3,又C為第四象限的點(diǎn),
∴C的坐標(biāo)為(3,﹣1);
(2)①∵拋物線y=﹣x2+ax+2經(jīng)過(guò)點(diǎn)C,且C(3,﹣1),
∴把C的坐標(biāo)代入得:﹣1=﹣+3a+2,解得:a=,
則拋物線的解析式為y=﹣x2+x+2;
②存在點(diǎn)P,△ABP是以AB為直角邊的等腰直角三角形,
(i)若以AB為直角邊,點(diǎn)A為直角頂點(diǎn),
則延長(zhǎng)CA至點(diǎn)P1使得P1A=CA,得到等腰直角三角形ABP1,過(guò)點(diǎn)P1作P1M⊥x軸,如圖所示,
∵AP1=CA,∠MAP1=∠CAD,∠P1MA=∠CDA=90°,
∴△AMP1≌△ADC,
∴AM=AD=2,P1M=CD=1,
∴P1(﹣1,1),經(jīng)檢驗(yàn)點(diǎn)P1在拋物線y=﹣x2+x+2上;
(ii)若以AB為直角邊,點(diǎn)B為直角頂點(diǎn),則過(guò)點(diǎn)B作BP2⊥BA,且使得BP2=AB,
得到等腰直角三角形ABP2,過(guò)點(diǎn)P2作P2N⊥y軸,如圖,
同理可證△BP2N≌△ABO,
∴NP2=OB=2,BN=OA=1,
∴P2(﹣2,﹣1),經(jīng)檢驗(yàn)P2(﹣2,﹣1)也在拋物線y=﹣x2+x+2上;
(iii)若以AB為直角邊,點(diǎn)B為直角頂點(diǎn),則過(guò)點(diǎn)B作BP3⊥BA,且使得BP3=AB,
得到等腰直角三角形ABP3,過(guò)點(diǎn)P3作P3H⊥y軸,如圖,
同理可證△BP3H≌△BAO,
∴HP3=OB=2,BH=OA=1,
∴P3(2,﹣3),經(jīng)檢驗(yàn)P3(2,﹣3)不在拋物線y=﹣x2+x+2上;
則符合條件的點(diǎn)有P1(﹣1,1),P2(﹣2,﹣1)兩點(diǎn).
考點(diǎn):1.二次函數(shù)綜合題2.點(diǎn)的坐標(biāo)3.等腰直角三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
在直角坐標(biāo)系xOy中,已知點(diǎn)P是反比例函數(shù)y=(x>0)圖象上一個(gè)動(dòng)點(diǎn),以P為圓心的圓始終與y軸相切,設(shè)切點(diǎn)為A.
(1)如圖1,⊙P運(yùn)動(dòng)到與x軸相切,設(shè)切點(diǎn)為K,試判斷四邊形OKPA的形狀,并說(shuō)明理由.
(2)如圖2,⊙P運(yùn)動(dòng)到與x軸相交,設(shè)交點(diǎn)為B,C.當(dāng)四邊形ABCP是菱形時(shí):
①求出點(diǎn)A,B,C的坐標(biāo).
②在過(guò)A,B,C三點(diǎn)的拋物線上是否存在點(diǎn)M,使△MBP的面積是菱形ABCP面積的?若存在,試求出所有滿足條件的M點(diǎn)的坐標(biāo);若不存在,試說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖1,在菱形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,AC=8,BD=6.現(xiàn)有兩動(dòng)點(diǎn)P、Q分別從A、C兩點(diǎn)同時(shí)出發(fā),點(diǎn)P以每秒1個(gè)單位長(zhǎng)的速度由點(diǎn)A向點(diǎn)D做勻速運(yùn)動(dòng),點(diǎn)Q沿折線CB—BA向點(diǎn)A做勻速運(yùn)動(dòng).
(1)點(diǎn)P將要運(yùn)行路徑AD的長(zhǎng)度為 ;點(diǎn)Q將要運(yùn)行的路徑折線CB—BA的長(zhǎng)度為 .
(2)當(dāng)點(diǎn)Q在BA邊上運(yùn)動(dòng)時(shí),若點(diǎn)Q的速度為每秒2個(gè)單位長(zhǎng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.
①求△APQ的面積S關(guān)于t的函數(shù)關(guān)系式,并求自變量t的取范圍;
②求當(dāng)t為何值時(shí),S有最大值,最大值是多少?
(3)如圖2,若點(diǎn)Q的速度為每秒a個(gè)單位長(zhǎng)(a≤),當(dāng)t =4秒時(shí):
①此時(shí)點(diǎn)Q是在邊CB上,還是在邊BA上呢?
②△APQ是等腰三角形,請(qǐng)求出a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
某商家獨(dú)家銷售具有地方特色的某種商品,每件進(jìn)價(jià)為40元.經(jīng)過(guò)市場(chǎng)調(diào)查,一周的銷售量y件與銷售單價(jià)x(x≥50)元/件的關(guān)系如下表:
銷售單價(jià)x (元/件) | … | 55 | 60 | 70 | 75 | … |
一周的銷售量y (件) | … | 450 | 400 | 300 | 250 | … |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,拋物線y=x2-2x+c的頂點(diǎn)A在直線l:y=x-5上.
(1)求拋物線頂點(diǎn)A的坐標(biāo);
(2)設(shè)拋物線與y軸交于點(diǎn)B,與x軸交于點(diǎn)C、D(C點(diǎn)在D點(diǎn)的左側(cè)),試判斷△ABD的形狀.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面直角坐標(biāo)系xOy中,拋物線的解析式是y=x2+1,點(diǎn)C的坐標(biāo)為(-4,0),平行四邊形OABC的頂點(diǎn)A,B在拋物線上,AB與y軸交于點(diǎn)M,已知點(diǎn)Q(x,y)在拋物線上,點(diǎn)P(t,0)在x軸上.
(1)寫(xiě)出點(diǎn)M的坐標(biāo);
(2)當(dāng)四邊形CMQP是以MQ,PC為腰的梯形時(shí);
①求t關(guān)于x的函數(shù)解析式和自變量x的取值范圍;
②當(dāng)梯形CMQP的兩底的長(zhǎng)度之比為1∶2時(shí),求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A、B的坐標(biāo)分別為(8,0)、(0,6).動(dòng)點(diǎn)Q從點(diǎn)O、動(dòng)點(diǎn)P從點(diǎn)A同時(shí)出發(fā),分別沿著OA方向、AB方向均以1個(gè)單位長(zhǎng)度/秒的速度勻速運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t(秒)(0<t≤5).以P為圓心,PA長(zhǎng)為半徑的⊙P與AB、OA的另一個(gè)交點(diǎn)分別為C、D,連接CD、QC.
(1)求當(dāng)t為何值時(shí),點(diǎn)Q與點(diǎn)D重合?
(2)設(shè)△QCD的面積為S,試求S與t之間的函數(shù)關(guān)系式,并求S的最大值;
(3)若⊙P與線段QC只有一個(gè)交點(diǎn),請(qǐng)直接寫(xiě)出t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=x2+bx+c的圖象與x軸交于A、B兩點(diǎn),A點(diǎn)在原點(diǎn)的左側(cè),B點(diǎn)的坐標(biāo)為(3,0),與y軸交于C(0,﹣3)點(diǎn),點(diǎn)P是直線BC下方的拋物線上一動(dòng)點(diǎn).
(1)求這個(gè)二次函數(shù)的表達(dá)式.
(2)連接PO、PC,并把△POC沿CO翻折,得到四邊形POP′C,那么是否存在點(diǎn)P,使四邊形POP′C為菱形?若存在,請(qǐng)求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),四邊形ABPC的面積最大?求出此時(shí)P點(diǎn)的坐標(biāo)和四邊形ABPC的最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在平面直角坐標(biāo)系中,已知點(diǎn)坐標(biāo)為(2,4),直線x=2與軸相交于點(diǎn),連結(jié),拋物線y=x從點(diǎn)沿方向平移,與直線x=2交于點(diǎn),頂點(diǎn)到點(diǎn)時(shí)停止移動(dòng).
(1)求線段所在直線的函數(shù)解析式;
(2)設(shè)拋物線頂點(diǎn)的橫坐標(biāo)為,
①用的代數(shù)式表示點(diǎn)的坐標(biāo);
②當(dāng)為何值時(shí),線段最短;
(3)當(dāng)線段最短時(shí),相應(yīng)的拋物線上是否存在點(diǎn),使△的面積與△的面積相等,若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com