【題目】已知拋物線y=x2-2x-3與x軸相交于A、B兩點(diǎn),其頂點(diǎn)為M,將此拋物線在x軸下方的部分沿x軸翻折,其余部分保持不變,得到一個(gè)新的圖象.如圖,當(dāng)直線y=-x+n與此圖象有且只有兩個(gè)公共點(diǎn)時(shí),則n的取值范圍為
【答案】n> 或-1<n<3
【解析】解:當(dāng)y=0時(shí),y=x2-2x-3=0,(x-3)(x+1)=0,
x=-1或3,
∴A(-1,0),B(3,0),
y=x2-2x-3=(x-1)2-4,
∴M(1,-4),
如圖,作直線y=-x,
分別過A、B作直線y=-x的平行線,
當(dāng)直線y=-x+n經(jīng)過A(-1,0)時(shí),1+n=0,n=-1,
當(dāng)直線y=-x+n經(jīng)過B(3,0)時(shí),-3+n=0,n=3,
∴n的取值范圍為:-1<n<3,
根據(jù)題意得:翻折后的頂點(diǎn)坐標(biāo)為(1,4),
∴翻折后的拋物線的解析式為:y=-(x-1)2+4=-x2+2x+3,
當(dāng)直線y=-x+n與拋物線y=-x2+2x+3只有一個(gè)公共點(diǎn)時(shí),
則 ,
-x2+2x+3=-x+n,
-x2+3x+3-n=0,
△=9+4(3-n)=0,
n= ,
綜上所述:當(dāng)直線y=-x+n與此圖象有且只有兩個(gè)公共點(diǎn)時(shí),則n的取值范圍為n> 或-1<n<3.
【考點(diǎn)精析】掌握二次函數(shù)圖象的平移和拋物線與坐標(biāo)軸的交點(diǎn)是解答本題的根本,需要知道平移步驟:(1)配方 y=a(x-h)2+k,確定頂點(diǎn)(h,k)(2)對x軸左加右減;對y軸上加下減;一元二次方程的解是其對應(yīng)的二次函數(shù)的圖像與x軸的交點(diǎn)坐標(biāo).因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點(diǎn).當(dāng)b2-4ac>0時(shí),圖像與x軸有兩個(gè)交點(diǎn);當(dāng)b2-4ac=0時(shí),圖像與x軸有一個(gè)交點(diǎn);當(dāng)b2-4ac<0時(shí),圖像與x軸沒有交點(diǎn).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商家經(jīng)銷一種綠茶,用于裝修門面已投資3000元,已知綠茶每千克成本50元,在第一個(gè)月的試銷時(shí)間內(nèi)發(fā)現(xiàn),銷量w(kg)隨銷售單價(jià)x(元/kg)的變化而變化,具體變化規(guī)律如下表所示
銷售單價(jià)x(元/kg) | … | 70 | 75 | 80 | 85 | 90 | … |
銷售量w(kg) | … | 100 | 90 | 80 | 70 | 60 | … |
設(shè)該綠茶的月銷售利潤為y(元)(銷售利潤=單價(jià)×銷售量﹣成本﹣投資).
(1)請根據(jù)上表,寫出w與x之間的函數(shù)關(guān)系式(不必寫出自變量x的取值范圍);
(2)求y與x之間的函數(shù)關(guān)系式(不必寫出自變量x的取值范圍).并求出x為何值時(shí),y的值最大?
(3)若在第一個(gè)月里,按使y獲得最大值的銷售單價(jià)進(jìn)行銷售后,在第二個(gè)月里受物價(jià)部門干預(yù),銷售單價(jià)不得高于90元,要想在全部收回投資的基礎(chǔ)上使第二個(gè)月的利潤達(dá)到1700元,那么第二個(gè)月里應(yīng)該確定銷售單價(jià)為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,AC=60 cm,∠A=60°,點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以4 cm/秒的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以2 cm/秒的速度向點(diǎn)B勻速運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)D,E運(yùn)動(dòng)的時(shí)間是t秒(0<t≤15).過點(diǎn)D作DF⊥BC于點(diǎn)F,連接DE,EF。
(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值;如果不能,請說明理由;
(3)當(dāng)t為何值時(shí),△DEF為直角三角形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店試銷一種成本單價(jià)為100元/件的運(yùn)動(dòng)服,規(guī)定試銷時(shí)的銷售單價(jià)不低于成本單價(jià),又不高于180元/件,經(jīng)市場調(diào)查,發(fā)現(xiàn)銷售量y(件)與銷售單價(jià)x(元)之間的關(guān)系滿足一次函數(shù)y=kx+b(k≠0),其圖象如圖。
(1)根據(jù)圖象,求一次函數(shù)的解析式;
(2)當(dāng)銷售單價(jià)x在什么范圍內(nèi)取值時(shí),銷售量y不低于80件。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列說法: ①2a+b=0;②當(dāng)-1≤x≤3時(shí),y<0;③若(x1 , y1)、(x2 , y2)在函數(shù)圖象上,當(dāng)x1<x2時(shí),y1<y2;④9a+3b+c=0,
其中正確的是( )
A.①②③
B.①②④
C.①④
D.②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知 ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(-1,1), B(-3,1),C(-1,4).
①畫出△ABC關(guān)于y軸對稱的△A1B1C1;
②將△ABC繞著點(diǎn)B順時(shí)針旋轉(zhuǎn)90°后得到△A2BC2 , 請?jiān)趫D中畫出△A2BC2 , 并求出線段BC旋轉(zhuǎn)過程中所掃過的面積(結(jié)果保留 )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一副三角尺如圖拼接:含角的三角尺的長直角邊與含角的三角尺的斜邊恰好重合已知是AC上的一個(gè)動(dòng)點(diǎn).
當(dāng)點(diǎn)P運(yùn)動(dòng)到的平分線上時(shí),連接DP,求DP的長;
當(dāng)點(diǎn)P在運(yùn)動(dòng)過程中出現(xiàn)時(shí),求此時(shí)的度數(shù);
當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),以為頂點(diǎn)的平行四邊形的頂點(diǎn)Q恰好在邊BC上?求出此時(shí)DPBQ的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,,.
(1)當(dāng)時(shí),=_________;
(2)當(dāng),時(shí),_________;
(3)當(dāng),時(shí),____________;
(4)猜想不論的度數(shù)是多少,的度數(shù)與的關(guān)系,并簡述理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,過拋物線y= x2﹣2x上一點(diǎn)A作x軸的平行線,交拋物線于另一點(diǎn)B,交y軸于點(diǎn)C,已知點(diǎn)A的橫坐標(biāo)為﹣2.
(1)求拋物線的對稱軸和點(diǎn)B的坐標(biāo);
(2)在AB上任取一點(diǎn)P,連結(jié)OP,作點(diǎn)C關(guān)于直線OP的對稱點(diǎn)D;
①連結(jié)BD,求BD的最小值;
②當(dāng)點(diǎn)D落在拋物線的對稱軸上,且在x軸上方時(shí),求直線PD的函數(shù)表達(dá)式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com