【題目】王強(qiáng)同學(xué)用10塊高度都是2cm的相同長(zhǎng)方體小木塊,壘了兩堵與地面垂直的木墻,木墻之間剛好可以放進(jìn)一個(gè)等腰直角三角板(AC=BC,∠ACB=90°),點(diǎn)C在DE上,點(diǎn)A和B分別與木墻的頂端重合,則兩堵木墻之間的距離為______cm.
【答案】20
【解析】
根據(jù)題意可得AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,進(jìn)而得到∠ADC=∠CEB=90°,再根據(jù)等角的余角相等可得∠BCE=∠DAC,再證明△ADC≌△CEB即可,利用全等三角形的性質(zhì)進(jìn)行解答.
解:由題意得:AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,
∴∠ADC=∠CEB=90°,
∴∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,
∴∠BCE=∠DAC,
在△ADC和△CEB中, ,
∴△ADC≌△CEB(AAS);
由題意得:AD=EC=6cm,DC=BE=14cm,
∴DE=DC+CE=20(cm),
答:兩堵木墻之間的距離為20cm.
故答案是:20.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠AOB=20°,點(diǎn)P在OA邊上.
(1)以點(diǎn)O為圓心,OP長(zhǎng)為半徑作,交OB于點(diǎn)C;
(2)分別以點(diǎn)P、C為圓心,PC長(zhǎng)為半徑作弧,交于點(diǎn)D、E;
(3)連接DE,分別交OC、OP于點(diǎn)F、G;
(4)連接DP.
根據(jù)以上作圖過(guò)程及所作圖形,下列結(jié)中正確的是_____.(填序號(hào))
①OC垂直平分DP;②∠COD=∠COP;③DF=FG;④OD=DE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,,點(diǎn)B關(guān)于的對(duì)稱(chēng)點(diǎn)E恰好落在上,若,則的度數(shù)為( 。
A.45°B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,內(nèi)接于,,是的直徑,點(diǎn)是延長(zhǎng)線(xiàn)上一點(diǎn),且.
求證:是的切線(xiàn);
若,求的直徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)經(jīng)營(yíng)某種品牌的玩具,購(gòu)進(jìn)時(shí)的單價(jià)是30元,根據(jù)市場(chǎng)調(diào)查:在一段時(shí)間內(nèi),銷(xiāo)售單價(jià)是40元時(shí),銷(xiāo)售量是600件,而銷(xiāo)售單價(jià)每漲1元,就會(huì)少售出10件玩具.
(1)該玩具銷(xiāo)售單價(jià)定為多少元時(shí),商場(chǎng)能獲得12000元的銷(xiāo)售利潤(rùn)?
(2)該玩具銷(xiāo)售單價(jià)定為多少元時(shí),商場(chǎng)獲得的銷(xiāo)售利潤(rùn)最大?最大利潤(rùn)是多少?
(3)若玩具廠(chǎng)規(guī)定該品牌玩具銷(xiāo)售單價(jià)不低于46元,且商場(chǎng)要完成不少于500件的銷(xiāo)售任務(wù),求商場(chǎng)銷(xiāo)售該品牌玩具獲得的最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)計(jì)劃購(gòu)進(jìn)一批甲、乙兩種玩具,已知一件甲種玩具的進(jìn)價(jià)與一件乙種玩具的進(jìn)價(jià)的和為40元,用180元購(gòu)進(jìn)甲種玩具的件數(shù)與用300元購(gòu)進(jìn)乙種玩具的件數(shù)相同.
(1)求每件甲種、乙種玩具的進(jìn)價(jià)分別是多少元?
(2)商場(chǎng)計(jì)劃購(gòu)進(jìn)甲、乙兩種玩具共50件,其中甲種玩具的件數(shù)少于乙種玩具的件數(shù),商場(chǎng)決定此次進(jìn)貨的總資金不超過(guò)1050元,商場(chǎng)共有幾種進(jìn)貨方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC,AD是BC邊上的中線(xiàn).求證:AD⊥BC.
(填空)
證明:∵AD是BC邊上的中線(xiàn)
∴BD=CD(中線(xiàn)的意義)
在△ABD和△ACD中
∵
①________;②________;③________.
∴ ________≌ ________(________)
∴∠ADB=________(________)
∴∠ADB= ∠BDC=90°(平角的定義)
∴AD⊥BC(垂直的定義)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC.
(1)尺規(guī)作圖:過(guò)點(diǎn)C作AB的垂線(xiàn)交AB于點(diǎn)O.不寫(xiě)作法,保留作圖痕跡;
(2)分別以直線(xiàn)AB,OC為x軸,y軸建立平面直角坐標(biāo)系,使點(diǎn)B,C 均在正半軸上.若AB=7.5,OC=4.5,∠A=45°,寫(xiě)出點(diǎn)B關(guān)于y軸的對(duì)稱(chēng)點(diǎn)D的坐標(biāo);
(3)在(2)的條件下,求△ACD的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com