【題目】如圖1,在△ABC中,∠A=36°,AB=AC,∠ABC的平分線BE交AC于E.
(1)求證:AE=BC;
(2)如圖2,過點E作EF∥BC交AB于F,將△AEF繞點A逆時針旋轉(zhuǎn)角α(0°<α<144°)得到△AE′F′,連結(jié)CE′、BF′,求證:CE′=BF′.
【答案】(1)見解析;(2)見解析.
【解析】
(1)根據(jù)等腰三角形的性質(zhì)以及角平分線的性質(zhì)得出對應(yīng)角之間的關(guān)系進而得出答案;
(2)由旋轉(zhuǎn)的性質(zhì)可知:∠E′AC=∠F′AB,AE′=AF′,根據(jù)全等三角形證明方法得出即可;
(1)證明:∵AB=AC,∠A=36°,
∴∠ABC=∠C=72°,
又∵BE平分∠ABC,
∴∠ABE=∠CBE=36°,
∴∠BEC=180°﹣∠C﹣∠CBE=72°,
∴∠ABE=∠A,∠BEC=∠C,
∴AE=BE,BE=BC,
∴AE=BC.
(2)證明:∵AC=AB且EF∥BC,
∴AE=AF;
由旋轉(zhuǎn)的性質(zhì)可知:,,
∵在△CAE′和△BAF′中
,
∴△CAE′≌△BAF′(SAS),
∴CE′=BF′.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣4x+4與x軸、y軸分別交于A、B兩點,以AB為邊在第一象限作正方形ABCD,將正方形ABCD沿x軸負方向平移a個單位長度后,點C恰好落在雙曲線在第一象限的分支上,則a的值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,反比例函數(shù)與二次函數(shù)y=k(x2+x-1)的圖象交于點A(1,k)和點B(-1,-k).
(1)當(dāng)k=-2時,求反比例函數(shù)的解析式;
(2)要使反比例函數(shù)與二次函數(shù)都是y隨著x的增大而增大,求k應(yīng)滿足的條件以及x的取值范圍.
(3)設(shè)二次函數(shù)的圖象的頂點為Q,當(dāng)△ABQ是以AB為斜邊的直角三角形時,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一筆直的海岸線l上有A、B兩個碼頭,A在B的正東方向,一艘小船從A碼頭沿它的北偏西60°的方向行駛了20海里到達點P處,此時從B碼頭測得小船在它的北偏東45°的方向.求此時小船到B碼頭的距離(即BP的長)和A、B兩個碼頭間的距離(結(jié)果都保留根號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,以坐標(biāo)原點為圓心、半徑為1的⊙O與x軸交于A,B兩點,與y軸交于C,D兩點.E為⊙O上在第一象限的某一點,直線BF交⊙O于點F,且∠ABF=∠AEC,則直線BF對應(yīng)的函數(shù)表達式為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD中,∠ABC=60°,有一度數(shù)為60°的∠MAN繞點A旋轉(zhuǎn).
(1)如圖①,若∠MAN的兩邊AM,AN分別交BC,CD于點E,F(xiàn),則線段CE,DF的大小關(guān)系如何?請證明你的結(jié)論;
(2)如圖②,若∠MAN的兩邊AM,AN分別交BC,CD的延長線于點E,F(xiàn),猜想線段CE,DF的大小關(guān)系如何?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x2-2x-3,點P在該函數(shù)的圖象上,點P到x軸、y軸的距離分別為d1、d2.設(shè)d=d1+d2,下列結(jié)論中: ①d沒有最大值; ②d沒有最小值; ③ -1<x<3時,d 隨x的增大而增大; ④滿足d=5的點P有四個.其中正確結(jié)論的個數(shù)有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將等腰△ABC繞頂點B逆時針方向旋轉(zhuǎn)α度到△A1B1C1的位置,AB與A1C1相交于點D,AC與A1C1、BC1分別交于點E. F.
(1)求證:△BCF≌△BA1D.
(2)當(dāng)∠C=α度時,判定四邊形A1BCE的形狀并說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,將坐標(biāo)是(0,4),(1,0),(2,4),(3,0),(4,4)的點用線段依次連接起來形成一個圖案.
(1)在下列坐標(biāo)系中畫出這個圖案;
(2)若將上述各點的橫坐標(biāo)保持不變,縱坐標(biāo)分別乘以-1,再將所得的各個點用線段依次連接起來,所得的圖案與原圖案相比有什么變化?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com