【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A、B、C的坐標(biāo)分別為(-1,0),(5,0),(0,2).

(1)求過(guò)A、B、C三點(diǎn)的拋物線解析式;

(2)若點(diǎn)P從A點(diǎn)出發(fā),沿x軸正方向以每秒1個(gè)單位長(zhǎng)度的速度向B點(diǎn)移動(dòng),連接PC并延長(zhǎng)到點(diǎn)E,使CE=PC,將線段PE繞點(diǎn)P順時(shí)針旋轉(zhuǎn)90°得到線段PF,連接FB.若點(diǎn)P運(yùn)動(dòng)的時(shí)間為t秒(0≤t≤6),設(shè)△PBF的面積為S;

①求S與t的函數(shù)關(guān)系式;

②當(dāng)t是多少時(shí),△PBF的面積最大,最大面積是多少?

(3)點(diǎn)P在移動(dòng)的過(guò)程中,△PBF能否成為直角三角形?若能,直接寫(xiě)出點(diǎn)F的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.

【答案】(1);(2)① S△PBF=t2﹣7t+6(0≤t<1),S△PBF=﹣t2+7t﹣6(1<t<6);②

當(dāng)t=3.5時(shí),面積最大,且最大值為6.25;(3)能,F點(diǎn)坐標(biāo)為:(5, )或(5,2).

【解析】分析:(1)因?yàn)閽佄锞過(guò)A、B、C三點(diǎn),所以此三點(diǎn)的坐標(biāo)使拋物線的解析式成立.(2)①此題要分作兩種情況進(jìn)行討論:

一、當(dāng)P點(diǎn)位于原點(diǎn)左側(cè),線段OA上;此時(shí)0≤t<1,可用t表示出OP、BP的長(zhǎng),欲求△BPF的面積,關(guān)鍵要求出BP邊上的高,可過(guò)FFD⊥x軸于D;由于∠CPF=90°,易證得△OPC∽△DFP,根據(jù)已知條件可知PF=PE=2PC,即兩個(gè)相似三角形的相似比為2,那么DF=2OP,由此可得到DF的長(zhǎng),以BP為底,DF為高,即可求得△BPF的面積表達(dá)式,也就得到了關(guān)于S、t的函數(shù)關(guān)系式;

二、當(dāng)P點(diǎn)位于原點(diǎn)右側(cè),線段BP上;此時(shí)1<t<6,可仿照一的方法進(jìn)行求解;

②根據(jù)①得到的S、t的函數(shù)關(guān)系式,及相應(yīng)的自變量的取值范圍,即可根據(jù)函數(shù)的性質(zhì)求得S的最大值及對(duì)應(yīng)的t值,然后進(jìn)行比較即可得到結(jié)果.

(3)當(dāng)P位于線段OA上時(shí),顯然△PFB不可能是直角三角形;由于∠BPF<∠CPF=90°,所以P不可能是直角頂點(diǎn),可分兩種情況進(jìn)行討論:

F為直角頂點(diǎn),過(guò)FFDx軸于D,由(2)可知BP=6-t,DP=2OC=4,在RtOCP中,OP=t-1,由勾股定理易求得CP=t2-2t+5,那么PF==4(t-2t+5);在RtPFB中,FDPB,由射影定理可求得PB=PF÷PD=t-2t+5,而PB的另一個(gè)表達(dá)式為:PB=6-t,聯(lián)立兩式可得t-2t+5=6-t,即t=

②B為直角頂點(diǎn),那么此時(shí)的情況與(2)題類(lèi)似,△PFB∽△CPO,且相似比為2,那么BP=2OC=4,即OP=OB-BP=1,此時(shí)t=2.

本題解析:(1)(法一)設(shè)拋物線的解析式為y=ax2+bx+c(a≠0),

把A(﹣1,0),B(5,0),C(0,2)

三點(diǎn)代入解析式得: , 解得

;

(法二)設(shè)拋物線的解析式為y=a(x﹣5)(x+1),

把(0,2)代入解析式得:2=﹣5a,

,

;

(2)①過(guò)點(diǎn)F作FD⊥x軸于D,

當(dāng)點(diǎn)P在原點(diǎn)左側(cè)時(shí),BP=6﹣t,OP=1﹣t;

在Rt△POC中,∠PCO+∠CPO=90°,

∴∠FPD+∠CPO=90°,

∵∠PCO=∠FPD;

∴∠POC=∠FDP,

∴△CPO∽△PFD,

∴PF=PE=2PC,

∴FD=2PO=2(1﹣t);

∴S△PBF= =t2﹣7t+6(0≤t<1);

當(dāng)點(diǎn)P在原點(diǎn)右側(cè)時(shí),OP=t﹣1,BP=6﹣t;

∵△CPO∽△PFD,

∴FD=2(t﹣1);∴S△PBF= =﹣t2+7t﹣6(1<t<6);

②當(dāng)0≤t<1時(shí),S=t2﹣7t+6;

此時(shí)t在t=3.5的左側(cè),S隨t的增大而減小,

則有:當(dāng)t=0時(shí),Smax=0﹣7×0+6=6;

當(dāng)1<t<6時(shí),S=﹣t2+7t﹣6;

由于1<3.5<6,故當(dāng)t=3.5時(shí),Smax=﹣3.5×3.5+7×3.5+6=6.25;

綜上所述,當(dāng)t=3.5時(shí),面積最大,且最大值為6.25.

(3)能;①若F為直角頂點(diǎn),過(guò)F作FD⊥x軸于D,

由(2)可知BP=6﹣t,DP=2OC=4,

在Rt△OCP中,OP=t﹣1,

由勾股定理易求得CP2=t2﹣2t+5,

那么PF2=(2CP)2=4(t2﹣2t+5);

在Rt△PFB中,F(xiàn)D⊥PB,

由射影定理可求得PB=PF2÷PD=t2﹣2t+,

而PB的另一個(gè)表達(dá)式為:PB=6﹣t,

聯(lián)立兩式可得t2﹣2t+5=6﹣t,

即t=,P點(diǎn)坐標(biāo)為(,0),

則F點(diǎn)坐標(biāo)為:(5, );

②B為直角頂點(diǎn),那么此時(shí)的情況與(2)題類(lèi)似,△PFB∽△CPO,且相似比為2,

那么BP=2OC=4,即OP=OB﹣BP=1,此時(shí)t=2,P點(diǎn)坐標(biāo)為(1,0).FD=2(t﹣1)=2,

則F點(diǎn)坐標(biāo)為(5,2).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)y=x122的圖象可看作由函數(shù)y=x2的圖象( 。

A.先向右平移1個(gè)單位長(zhǎng)度,再向上平移2個(gè)單位長(zhǎng)度

B.先向左平移1個(gè)單位長(zhǎng)度,再向上平移2個(gè)單位長(zhǎng)度

C.先向左平移1個(gè)單位長(zhǎng)度,再向下平移2個(gè)單位長(zhǎng)度

D.先向右平移1個(gè)單位長(zhǎng)度,再向下平移2個(gè)單位長(zhǎng)度

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將△ABC繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn)θ度,并使各邊長(zhǎng)變?yōu)樵瓉?lái)的n倍,得△AB′C′ ,如圖①所示,∠BAB′ θ, ,我們將這種變換記為,n]

1)如圖①,對(duì)△ABC作變換[60°]得到△AB′C′ ,則:= ;直線BC與直線B′C′所夾的銳角為 度;

2)如圖②ABC中,∠BAC=30°,ACB=90°,對(duì)△ABC作變換,n]得到△AB′C′,使點(diǎn)B、C、在同一直線上,且四邊形ABB′C′為矩形,求θn的值;

3)如圖③,ABC中,AB=AC,BAC=36°,BC=1,對(duì)△ABC作變換,n]得到△AB′C′,使點(diǎn)B、C、B′在同一直線上,且四邊形ABB′C′為平行四邊形,求θn的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知在△ABC中,DE∥BC交AC于點(diǎn)E,交AB于點(diǎn)D,DE=BC
求證:D、E分別是AB、AC的中點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果一個(gè)有理數(shù)的奇次冪是正數(shù),那么這個(gè)有理數(shù)(
A.一定是正數(shù)
B.是正數(shù)或負(fù)數(shù)
C.一定是負(fù)數(shù)
D.可以是任意有理數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解某校全體同學(xué)喜歡的NBA籃球明星的情況,小明抽取了七年級(jí)一班50名同學(xué)進(jìn)行調(diào)查,得到最喜歡的NBA籃球明星的調(diào)查結(jié)果如下:

A A B C D A B A A C B A A C B C A A B C A A B A C 

D B A C D B A C D A A B C D A C B A C A C D C A A

其中:A代表姚明,B代表科比,C代表詹姆斯,D代表麥迪.

填表:

明星

劃記

人數(shù)

A

B

C

D

(2)該班同學(xué)喜歡最多的是誰(shuí)?

(3)你認(rèn)為小明所選取的樣本是隨機(jī)調(diào)查的樣本嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某家電商場(chǎng)A、B兩種品牌彩電2016年5~12月銷(xiāo)售量統(tǒng)計(jì)如圖.

(1)有人認(rèn)為B品牌彩電銷(xiāo)售量比A品牌彩電銷(xiāo)售量增長(zhǎng)快.你同意這種觀點(diǎn)嗎?

(2)根據(jù)統(tǒng)計(jì)圖進(jìn)行比較、判斷時(shí)要注意些什么?

(3)如果你是商場(chǎng)經(jīng)理,從上面的統(tǒng)計(jì)圖中你能得到哪些信息?對(duì)你有什么幫助?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線y=2x﹣5經(jīng)過(guò)點(diǎn)A(a,1﹣a),則A點(diǎn)落在第_____象限.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本題滿分10分)從M地到N地有一條普通公路,總路程為120km;有一條高速公路,總路程為126km.甲車(chē)和乙車(chē)同時(shí)從M地開(kāi)往N地,甲車(chē)全程走普通公路,乙車(chē)先行駛了另一段普通公路,然后再上高速公路.假設(shè)兩車(chē)在普通公路和高速公路上分別保持勻速行駛,其中在普通公路上的行車(chē)速度為60km/h,在高速公路上的行車(chē)速度為100km/h.設(shè)兩車(chē)出發(fā)x h時(shí),距N地的路程為y km,圖中的線段AB與折線ACD分別表示甲車(chē)與乙車(chē)的yx之間的函數(shù)關(guān)系.

(1)填空:a ,b ;

(2)求線段ABCD所表示的yx之間的函數(shù)關(guān)系式;

(3)兩車(chē)在何時(shí)間段內(nèi)離N地的路程之差達(dá)到或超過(guò)30km

查看答案和解析>>

同步練習(xí)冊(cè)答案