【題目】如圖甲,AB⊥BD,CD⊥BD,AP⊥PC,垂足分別為B、P、D,且三個垂足在同一直線上,我們把這樣的圖形叫“三垂圖”.
(1)證明:ABCD=PBPD.
(2)如圖乙,也是一個“三垂圖”,上述結(jié)論成立嗎?請說明理由.
(3)已知拋物線與x軸交于點(diǎn)A(﹣1,0),B(3,0),與y軸交于點(diǎn)(0,﹣3),頂點(diǎn)為P,如圖丙所示,若Q是拋物線上異于A、B、P的點(diǎn),使得∠QAP=90°,求Q點(diǎn)坐標(biāo).
【答案】
(1)
證明:∵AB⊥BD,CD⊥BD,
∴∠B=∠D=90°,
∴∠A+∠APB=90°,
∵AP⊥PC,
∴∠APB+∠CPD=90°,
∴∠A=∠CPD,
∴△ABP∽△PCD,
∴ = ,
∴ABCD=PBPD
(2)
ABCD=PBPD仍然成立.
理由如下:∵AB⊥BD,CD⊥BD,
∴∠B=∠CDP=90°,
∴∠A+∠APB=90°,
∵AP⊥PC,
∴∠APB+∠CPD=90°,
∴∠A=∠CPD,
∴△ABP∽△PCD,
∴ = ,
∴ABCD=PBPD
(3)
設(shè)拋物線解析式為y=ax2+bx+c(a≠0),
∵拋物線與x軸交于點(diǎn)A(﹣1,0),B(3,0),與y軸交于點(diǎn)(0,﹣3),
∴ ,
解得 ,
所以,y=x2﹣2x﹣3,
∵y=x2﹣2x﹣3=(x﹣1)2﹣4,
∴頂點(diǎn)P的坐標(biāo)為(1,﹣4),
過點(diǎn)P作PC⊥x軸于C,設(shè)AQ與y軸相交于D,
則AO=1,AC=1+1=2,PC=4,
根據(jù)(2)的結(jié)論,AOAC=ODPC,
∴1×2=OD4,
解得OD= ,
∴點(diǎn)D的坐標(biāo)為(0, ),
設(shè)直線AD的解析式為y=kx+b(k≠0),
則 ,
解得 ,
所以,y= x+ ,
聯(lián)立 ,
解得 , (為點(diǎn)A坐標(biāo),舍去),
所以,點(diǎn)Q的坐標(biāo)為( , ).
【解析】(1)根據(jù)同角的余角相等求出∠A=∠CPD,然后求出△ABP和△PCD相似,再根據(jù)相似三角形對應(yīng)邊成比例列式整理即可得證;(2)與(1)的證明思路相同;(3)利用待定系數(shù)法求出二次函數(shù)解析式,根據(jù)拋物線解析式求出點(diǎn)P的坐標(biāo),再過點(diǎn)P作PC⊥x軸于C,設(shè)AQ與y軸相交于D,然后求出PC、AC的長,再根據(jù)(2)的結(jié)論求出OD的長,從而得到點(diǎn)D的坐標(biāo),利用待定系數(shù)法求出直線AD的解析式,與拋物線解析式聯(lián)立求解即可得到點(diǎn)Q的坐標(biāo).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于x的一元二次方程x2﹣3x+p=0(p≠0)的兩個不相等的實(shí)數(shù)根分別為a和b,且a2﹣ab+b2=18,則 + 的值是( )
A.3
B.﹣3
C.5
D.﹣5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電腦公司銷售部為了定制下個月的銷售計(jì)劃,對20位銷售員本月的銷售量進(jìn)行了統(tǒng)計(jì),繪制成如圖所示的統(tǒng)計(jì)圖,則這20位銷售人員本月銷售量的平均數(shù)、中位數(shù)、眾數(shù)分別是( )
A.19,20,14
B.19,20,20
C.18.4,20,20
D.18.4,25,20
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一張矩形紙片ABCD中,AB=4,BC=8,點(diǎn)E,F(xiàn)分別在AD,BC上,將紙片ABCD沿直線EF折疊,點(diǎn)C落在AD上的一點(diǎn)H處,點(diǎn)D落在點(diǎn)G處,有以下四個結(jié)論: ①四邊形CFHE是菱形;②線段BF的取值范圍為3≤BF≤4;
③EC平分∠DCH;④當(dāng)點(diǎn)H與點(diǎn)A重合時,EF=2
以上結(jié)論中,你認(rèn)為正確的有 . (填序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某網(wǎng)店打出促銷廣告:最潮新款服裝50件,每件售價300元,若一次性購買不超過10件時,售價不變;若一次性購買超過10件時,每多買1件,所買的每件服裝的售價均降低2元.已知該服裝成本是每件200元,設(shè)顧客一次性購買服裝x件時,該網(wǎng)店從中獲利y元.
(1)求y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)顧客一次性購買多少件時,該網(wǎng)店從中獲利最多?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A,B的坐標(biāo)分別為(1,4)和(4,4),拋物線y=a(x+m)2+n的頂點(diǎn)在線段AB上,與x軸交于C,D兩點(diǎn)(C在D的左側(cè)),點(diǎn)C的橫坐標(biāo)最小值為﹣3,則點(diǎn)D的橫坐標(biāo)的最大值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義{a,b,c}為函數(shù)y=ax2+bx+c的“特征數(shù)”.
(1)“特征數(shù)”為{﹣1,2,3}的函數(shù)解析式為 , 將“特征數(shù)”為{0,1,1}的函數(shù)向下平移兩個單位以后得到的函數(shù)解析式為;
(2)我們把橫、縱坐標(biāo)均為整數(shù)的點(diǎn)稱為“整點(diǎn)”,試問:在上述兩空填寫的函數(shù)圖象圍成的封閉圖形(包含邊界)內(nèi)共有多少個整點(diǎn)?請給出詳細(xì)的運(yùn)算過程;
(3)定義“特征數(shù)”的運(yùn)算:①{a1 , b1 , c1}+{a2 , b2 , c2}={a1+a2 , b1+b2 , c1+c2};②λ{(lán)a1 , b1 , c1}={λa1 , λb1 , λc1}(其中λ為任意常數(shù)).試問:“特征數(shù)”為{﹣1,2,3}+λ{(lán)0,1,﹣1}的函數(shù)是否過定點(diǎn)?如果過定點(diǎn),請計(jì)算出該定點(diǎn)坐標(biāo);如果不存在,請說明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線l:y=kx+b(k≠0)的圖象與x軸、y軸交于A、B兩點(diǎn),A(﹣2,0),B(0,1).
(1)求直線l的函數(shù)表達(dá)式;
(2)若P是x軸上的一個動點(diǎn),請直接寫出當(dāng)△PAB是等腰三角形時P的坐標(biāo);
(3)在y軸上有點(diǎn)C(0,3),點(diǎn)D在直線l上,若△ACD面積等于4,求點(diǎn)D的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com