【題目】問(wèn)題探究:

如圖1ACBDCE均為等邊三角形,點(diǎn)AD、E在同一直線上,連接BE

1)證明:AD=BE;

2)求∠AEB的度數(shù).

問(wèn)題變式:

3)如圖2,ACBDCE均為等腰直角三角形,∠ACB=DCE=90°,點(diǎn)AD、E在同一直線上,CMDCEDE邊上的高,連接BE.()請(qǐng)求出∠AEB的度數(shù);()判斷線段CM、AE、BE之間的數(shù)量關(guān)系,并說(shuō)明理由.

【答案】1)見(jiàn)詳解;(260°;(3)(90°;(AE=BE+2CM,理由見(jiàn)詳解.

【解析】

1)由條件△ACB和△DCE均為等邊三角形,易證△ACD≌△BCE,從而得到對(duì)應(yīng)邊相等,即AD=BE;
2)根據(jù)△ACD≌△BCE,可得∠ADC=BEC,由點(diǎn)A,D,E在同一直線上,可求出∠ADC=120°,從而可以求出∠AEB的度數(shù);
3)()首先根據(jù)△ACB和△DCE均為等腰直角三角形,可得AC=BC,CD=CE,∠ACB=DCE=90°,據(jù)此判斷出∠ACD=BCE;然后根據(jù)全等三角形的判定方法,判斷出△ACD≌△BCE,即可判斷出BE=AD,∠BEC=ADC,進(jìn)而判斷出∠AEB的度數(shù)為90°;()根據(jù)DCE=90°CD=CE,CMDE,可得CM=DM=EM,所以DE=DM+EM=2CM,據(jù)此判斷出AE=BE+2CM

解:(1)如圖1

∵△ACBDCE均為等邊三角形,
CA=CB,CD=CE,∠ACB=DCE=60°,
∴∠ACD=BCE
ACDBCE中,
∴△ACD≌△BCESAS),
AD=BE;
2)如圖1,∵△ACD≌△BCE,
∴∠ADC=BEC
∵△DCE為等邊三角形,
∴∠CDE=CED=60°,
∵點(diǎn)A,D,E在同一直線上,
∴∠ADC=120°,
∴∠BEC=120°,
∴∠AEB=BEC-CED=60°

3)()如圖2

∵△ACBDCE均為等腰直角三角形,
AC=BC,CD=CE,∠ACB=DCE=90°,∠CDE=CED=45°,
∴∠ACB-DCB=DCE-DCB,
即∠ACD=BCE
ACDBCE中,,
∴△ACD≌△BCESAS),
BE=AD,∠BEC=ADC
∵點(diǎn)AD,E在同一直線上,
∴∠ADC=180-45=135°,
∴∠BEC=135°,
∴∠AEB=BEC-CED=135°-45°=90°,
故答案為:90°;
)如圖2,∵∠DCE=90°,CD=CE,CMDE,
CM=DM=EM,
DE=DM+EM=2CM,
∵△ACD≌△BCE(已證),
BE=AD,
AE=AD+DE=BE+2CM,
故答案為:AE=BE+2CM

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】經(jīng)過(guò)一年多的精準(zhǔn)幫扶,小明家的網(wǎng)絡(luò)商店(簡(jiǎn)稱(chēng)網(wǎng)店)將紅棗、小米等優(yōu)質(zhì)土特產(chǎn)迅速銷(xiāo)往全國(guó),小明家網(wǎng)店中紅棗和小米這兩種商品的相關(guān)信息如下表:

商品

紅棗

小米

規(guī)格

1kg/

2kg/

成本(元/袋)

40

38

售價(jià)(元/袋)

60

54

根據(jù)上表提供的信息,解答下列問(wèn)題:

(1)已知今年前五個(gè)月,小明家網(wǎng)店銷(xiāo)售上表中規(guī)格的紅棗和小米共3000kg,獲得利潤(rùn)4.2萬(wàn)元,求這前五個(gè)月小明家網(wǎng)店銷(xiāo)售這種規(guī)格的紅棗多少袋;

(2)根據(jù)之前的銷(xiāo)售情況,估計(jì)今年6月到10月這后五個(gè)月,小明家網(wǎng)店還能銷(xiāo)售上表中規(guī)格的紅棗和小米共2000kg,其中,這種規(guī)格的紅棗的銷(xiāo)售量不低于600kg.假設(shè)這后五個(gè)月,銷(xiāo)售這種規(guī)格的紅棗味xkg),銷(xiāo)售這種規(guī)格的紅棗和小米獲得的總利潤(rùn)為y,求出yx之間的函數(shù)關(guān)系式,并求出這后五個(gè)月,小明家網(wǎng)店銷(xiāo)售這種規(guī)格的紅棗和小米至少獲得總利潤(rùn)多少元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知,現(xiàn)將一直角三角形放入圖中,其中,于點(diǎn)于點(diǎn)

(1)當(dāng)所放位置如圖一所示時(shí),則的數(shù)量關(guān)系為 ;

(2)當(dāng)所放位置如圖二所示時(shí),試說(shuō)明:;

(3)在(2)的條件下,若交于點(diǎn),且,,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,已知點(diǎn)A0a),點(diǎn)Bb,0),其中a,b滿足0,點(diǎn)Cm,n)在第一象限,已知2的立方根.

1)直接寫(xiě)出A,B,C三點(diǎn)的坐標(biāo);

2)求出ABC的面積;

3)如圖2,延長(zhǎng)BCy軸于D點(diǎn),求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義一種對(duì)正整數(shù)n的“F”運(yùn)算:當(dāng)n為奇數(shù)時(shí),結(jié)果為Fn=3n+1;當(dāng)n為偶數(shù)時(shí),結(jié)果為Fn=(其中k是使F(n)為奇數(shù)的正整數(shù))……,兩種運(yùn)算交替重復(fù)進(jìn)行.例如,取n13,則:

n24,則第100次“F”運(yùn)算的結(jié)果是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)開(kāi)展陽(yáng)光體育一小時(shí)活動(dòng),按學(xué)校實(shí)際情況,決定開(kāi)設(shè)A:踢毽子;B:籃球;C:跳繩;D:乒乓球四種運(yùn)動(dòng)項(xiàng)目.為了解學(xué)生最喜歡哪一種運(yùn)動(dòng)項(xiàng)目,隨機(jī)抽取了一部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成如下兩個(gè)統(tǒng)計(jì)圖.請(qǐng)結(jié)合圖中的信息解答下列問(wèn)題:

(1)本次共調(diào)查了________名學(xué)生;

(2)在扇形統(tǒng)計(jì)圖中,“B”所在扇形的圓心角是________度;

(3)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

(4)若該中學(xué)有1200名學(xué)生,喜歡籃球運(yùn)動(dòng)的學(xué)生約有________名.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)為提高學(xué)生的身體素質(zhì),經(jīng)常在課間開(kāi)展學(xué)生跳繩比賽,下表為該校七年級(jí)名學(xué)生參加某次跳繩比賽的情況,規(guī)定標(biāo)準(zhǔn)數(shù)量為每人每分鐘個(gè).

1)求七年級(jí)人中跳繩最多的同學(xué)一分鐘跳的次數(shù)是多少個(gè),跳繩最少的同學(xué)一分鐘跳的次數(shù)是多少個(gè)?

2)跳繩比賽的計(jì)分方式如下:

①若每分鐘跳繩個(gè)數(shù)是規(guī)定標(biāo)準(zhǔn)數(shù)量,不計(jì)分;

②若每分鐘跳繩個(gè)數(shù)超過(guò)規(guī)定標(biāo)準(zhǔn)數(shù)量,每多跳個(gè)繩加

③若每分鐘跳繩個(gè)數(shù)沒(méi)有達(dá)到規(guī)定標(biāo)準(zhǔn)數(shù)量,每少跳個(gè)繩扣

如果班級(jí)跳繩總積分超過(guò)分,便可得到學(xué)校的獎(jiǎng)勵(lì),請(qǐng)你通過(guò)計(jì)算說(shuō)明七年級(jí)班能否得到學(xué)校獎(jiǎng)勵(lì)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,3×3的方格分為上中下三層,第一層有一枚黑色方塊甲,可在方格A、B、C中移動(dòng),第二層有兩枚固定不動(dòng)的黑色方塊,第三層有一枚黑色方塊乙,可在方格D、E、F中移動(dòng),甲、乙移入方格后,四枚黑色方塊構(gòu)成各種拼圖.

(1)若乙固定在E處,移動(dòng)甲后黑色方塊構(gòu)成的拼圖是軸對(duì)稱(chēng)圖形的概率是________.

(2)若甲、乙均可在本層移動(dòng).

①用樹(shù)形圖或列表法求出黑色方塊所構(gòu)拼圖是軸對(duì)稱(chēng)圖形的概率.

②黑色方塊所構(gòu)拼圖是中心對(duì)稱(chēng)圖形的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖在第1個(gè)ABA1,B=40°,BAA1=∠BA1AA1B上取一點(diǎn)C,延長(zhǎng)AA1A2使得在第2個(gè)A1CA2,A1CA2=∠A1 A2C;A2C上取一點(diǎn)D延長(zhǎng)A1A2A3,使得在第3個(gè)A2DA3A2DA3=∠A2 A3D;按此做法進(jìn)行下去,3個(gè)三角形中以A3為頂點(diǎn)的內(nèi)角的度數(shù)為 ;n個(gè)三角形中以An為頂點(diǎn)的內(nèi)角的度數(shù)為

查看答案和解析>>

同步練習(xí)冊(cè)答案