【題目】綜合題。
(1)問(wèn)題發(fā)現(xiàn):如圖1,△ACB和△DCE均為等邊三角形,當(dāng)△DCE旋轉(zhuǎn)至點(diǎn)A,D,E在同一直線上,連接BE,易證△BCE≌△ACD.則
①∠BEC=°;②線段AD、BE之間的數(shù)量關(guān)系是 .
(2)拓展研究:
如圖2,△ACB和△DCE均為等腰三角形,且∠ACB=∠DCE=90°,點(diǎn)A、D、E在同一直線上,若AE=15,DE=7,求AB的長(zhǎng)度.
(3)探究發(fā)現(xiàn):
如圖3,P為等邊△ABC內(nèi)一點(diǎn),且∠APC=150°,且∠APD=30°,AP=5,CP=4,DP=8,求BD的長(zhǎng).
【答案】
(1)120;AD=BE
(2)
解:∵△ACB和△DCE均為等腰直角三角形,
∴CA=CB,CD=CE,∠ACB=∠DCE=90°.
∴∠ACD=∠BCE.
在△ACD和△BCE中, ,
∴△ACD≌△BCE(SAS).
∴AD=BE=AE﹣DE=15﹣7=8,∠ADC=∠BEC,
∵△DCE為等腰直角三角形
∴∠CDE=∠CED=45°.
∵點(diǎn)A,D,E在同一直線上,
∴∠ADC=135°.
∴∠BEC=135°.
∴∠AEB=∠BEC﹣∠CED=90°.
∴AB= = =17
(3)
解:把△APC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)60°得△BEC,連接PE,如圖所示:
則△BEC≌△APC,
∴CE=CP,∠PCE=60°,BE=AP=5,∠BEC=∠APC=150°,
∴△PCE是等邊三角形,
∴∠EPC=∠PEC=60°,PE=CP=4,
∴∠BED=∠BEC﹣∠PEC=90°,
∵∠APD=30°,
∴∠DPC=150°﹣30°=120°,
又∵∠DPE=∠DPC+∠EPC=120°+60°=180°,
即D、P、E在同一條直線上,
∴DE=DP+PE=8+4=12,
在Rt△BDE中, ,
即BD的長(zhǎng)為13.
【解析】解:(1)①∵△ACB和△DCE均為等邊三角形,
∴CA=CB,CD=CE,∠ACB=∠DCE=60°.
∴∠ACD=∠BCE.
在△ACD和△BCE中, ,
∴△ACD≌△BCE(SAS).
∴∠ADC=∠BEC.
∵△DCE為等邊三角形,
∴∠CDE=∠CED=60°.
∵點(diǎn)A,D,E在同一直線上,
∴∠ADC=120°.
∴∠BEC=120°.
故答案為:120.
②由①得:△ACD≌△BCE,
∴AD=BE;
故答案為:AD=BE.
(1)由條件易證△ACD≌△BCE,從而得到:AD=BE,∠ADC=∠BEC.由點(diǎn)A,D,E在同一直線上可求出∠ADC,從而可以求出∠BEC的度數(shù).(2)同(1)證出△ACD≌△BCE,得出AD=BE=AE﹣DE=8,∠ADC=∠BEC,求出∠BEC=135°,得出∠AEB=∠BEC﹣∠CED=90°.由勾股定理求出AB即可;(3)把△APC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)60°得△BEC,連接PE,則△BEC≌△APC,得出CE=CP,∠PCE=60°,BE=AP=5,∠BEC=∠APC=150°,證出△PCE是等邊三角形,得出∠EPC=∠PEC=60°,PE=CP=4,求出∠BED=∠BEC﹣∠PEC=90°,證明D、P、E在同一條直線上,得出DE=DP+PE=12,再由勾股定理求出BD即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 我們知道在同一平面內(nèi),兩條平行直線的交點(diǎn)有0個(gè),兩條相交直線的交點(diǎn)有1個(gè),平面內(nèi)三條平行直線的交點(diǎn)有0個(gè),經(jīng)過(guò)同一點(diǎn)的三條直線的交點(diǎn)有1個(gè)……
(1)平面上有三條互不重合的直線,請(qǐng)畫(huà)圖探究它們的交點(diǎn)個(gè)數(shù);
(2)若平面內(nèi)的五條直線恰有4個(gè)交點(diǎn),請(qǐng)畫(huà)出符合條件的所有圖形;
(3)在平面內(nèi)畫(huà)出10條直線,使它們的交點(diǎn)個(gè)數(shù)恰好是32.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】王老師自駕轎車(chē)沿高速公路從A地到B地旅游,途經(jīng)兩座跨海大橋,共用了4.5小時(shí);返回時(shí)平均速度提高了10千米/小時(shí),比去時(shí)少用了半小時(shí)回到A地.
(1)求A、B兩地間的路程.
(2)兩座跨海大橋的長(zhǎng)度及過(guò)橋費(fèi)見(jiàn)表.
該省交通部門(mén)規(guī)定:轎車(chē)的高速公路通行費(fèi)y(元)的計(jì)算方法為:y=ax+b+5,其中a(元/千米)為高速公路里程費(fèi),x(千米)為高速公路里程(不包括跨海大橋長(zhǎng)),b(元)為跨海大橋過(guò)橋費(fèi).若王老師從A地到B地所花的高速公路通行費(fèi)為295.4元,求轎車(chē)的高速公路里程費(fèi)a.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一輛客車(chē)從甲地開(kāi)往乙地,一輛轎車(chē)從乙地開(kāi)往甲地,兩車(chē)同時(shí)出發(fā),兩車(chē)行駛x小時(shí)后,記客車(chē)離甲地的距離為y1千米,轎車(chē)離甲地的距離為y2千米,y1、y2關(guān)于x的函數(shù)圖象如圖.
(1)根據(jù)圖象,直接寫(xiě)出y1、y2關(guān)于x的函數(shù)關(guān)系式;
(2)當(dāng)兩車(chē)相遇時(shí),求此時(shí)客車(chē)行駛的時(shí)間;
(3)兩車(chē)相距200千米時(shí),求客車(chē)行駛的時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】探究歸納題:
(1)試驗(yàn)
如圖1,直線上有兩點(diǎn)A與B,圖中有線段___條;
(2)拓展延伸:
圖2直線上有A,B,C三個(gè)點(diǎn),以A為端點(diǎn),有線段AB,線段AC;同樣以C為端點(diǎn),有線段CA,線段CB;以B為端點(diǎn),有線段BA,線段BC,去除重復(fù)線段,圖2共有___條線段;
同樣方法探究出圖3中有_____條線段;
(3)探索歸納:
如果直線上有n(n為正整數(shù))個(gè)點(diǎn),則共有________條線段.(用含n的式子表示)
(4)解決問(wèn)題:
①中職籃(CBA)2018——2019賽季,比賽隊(duì)伍數(shù)仍然為20支,截止2018年12月14日,賽程已經(jīng)過(guò)半(每?jī)申?duì)之間都賽了一場(chǎng)),請(qǐng)你幫助計(jì)算一下目前一共進(jìn)行了多少場(chǎng)比賽?
②2018年11月30日,赤峰至京沈高鐵喀左站客運(yùn)專(zhuān)線路基工程全部完成,將正式進(jìn)入軌道鋪設(shè)階段,預(yù)計(jì)2020年7月1日通車(chē),北京至赤峰有北京星火站,順義西站,懷柔南站,密云站,興隆西站,安匠站,承德南站,承德縣北站,平泉北站,牛河梁站,喀左站,寧城站、平莊西站、赤峰西站等共計(jì)14個(gè)車(chē)站,請(qǐng)你幫助計(jì)算一下,應(yīng)該設(shè)計(jì)多少種高鐵車(chē)票?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】實(shí)踐操作題 某班學(xué)生植樹(shù),若每人植7棵樹(shù),則剩5棵樹(shù);若每人植8棵樹(shù),則有1人少植1棵樹(shù),問(wèn)有多少名學(xué)生植樹(shù),有多少棵樹(shù).
(1)假設(shè)有x名學(xué)生植樹(shù),有y棵樹(shù),請(qǐng)列出關(guān)于這個(gè)問(wèn)題的二元一次方程組;
(2)用列表的方法求出有多少名學(xué)生植樹(shù),有多少棵樹(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)在等邊三角形ABC中,
①如圖①,D,E分別是邊AC,AB上的點(diǎn)且AE=CD,BD與EC交于點(diǎn)F,則∠BFE的度數(shù)是 度;
②如圖②,D,E分別是邊AC,BA延長(zhǎng)線上的點(diǎn)且AE=CD,BD與EC的延長(zhǎng)線交于點(diǎn)F,此時(shí)∠BFE的度數(shù)是 度;
(2)如圖③,在△ABC中,AC=BC,∠ACB是銳角,點(diǎn)O是AC邊的垂直平分線與BC的交點(diǎn),點(diǎn)D,E分別在AC,OA的延長(zhǎng)線上,AE=CD,BD與EC的延長(zhǎng)線交于點(diǎn)F,若∠ACB=α,求∠BFE的大小.(用含α的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)軸上兩點(diǎn)A,B對(duì)應(yīng)的數(shù)分別為﹣4,8.
(1)如圖1,如果點(diǎn)P和點(diǎn)Q分別從點(diǎn)A,B同時(shí)出發(fā),沿?cái)?shù)軸負(fù)方向運(yùn)動(dòng),點(diǎn)P的運(yùn)動(dòng)速度為每秒2個(gè)單位,點(diǎn)Q的運(yùn)動(dòng)速度為每秒6個(gè)單位.
①A,B兩點(diǎn)之間的距離為 .
②當(dāng)P,Q兩點(diǎn)相遇時(shí),點(diǎn)P在數(shù)軸上對(duì)應(yīng)的數(shù)是 .
③求點(diǎn)P出發(fā)多少秒后,與點(diǎn)Q之間相距4個(gè)單位長(zhǎng)度?
(3)如圖2,如果點(diǎn)P從點(diǎn)A出發(fā)沿?cái)?shù)軸的正方向以每秒2個(gè)單位的速度運(yùn)動(dòng),點(diǎn)Q從點(diǎn)B出發(fā)沿?cái)?shù)軸的負(fù)方向以每秒6個(gè)單位的速度運(yùn)動(dòng),點(diǎn)M從數(shù)軸原點(diǎn)O出發(fā)沿?cái)?shù)軸的正方向以每秒1個(gè)單位的速度運(yùn)動(dòng),若三個(gè)點(diǎn)同時(shí)出發(fā),經(jīng)過(guò)多少秒后有MP=MQ?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com