【題目】如果α是銳角,且tanα=cot20°,那么α=度.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)思考:
(1)如圖1,已知AB∥CD,探究下面圖形中∠APC和∠PAB、∠PCD的關(guān)系,并證明你的結(jié)論
(2)①如圖2,已知AA1∥BA1 , 請你猜想∠A1 , ∠B1 , ∠B2 , ∠A2、∠A3的關(guān)系,并證明你的猜想;
②如圖3,已知AA1∥BAn , 直接寫出∠A1 , ∠B1 , ∠B2 , ∠A2、…∠Bn﹣1、∠An的關(guān)系
(3)①如圖4所示,若AB∥EF,用含α,β,γ的式子表示x,應(yīng)為
A.180°+α+β﹣γ B.180°﹣α﹣γ+β C.β+γ﹣α D.α+β+γ
②如圖5,AB∥CD,且∠AFE=40°,∠FGH=90°,∠HMN=30°,∠CNP=50°,請你根據(jù)上述結(jié)論直接寫出∠GHM的度數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,D是BC邊的中點(diǎn),E、F分別在AD及其延長線上,CE∥BF,連結(jié)BE、CF.
(1)圖中的四邊形BFCE是平行四邊形嗎?為什么?
(2)若AB=AC,其它條件不變,那么四邊形BFCE是菱形嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算:
(1)已知a+b=-3,ab=5,求多項(xiàng)式4a2b+4ab2-4a-4b的值;
(2)已知x2-3x-1=0,求代數(shù)式3-3 x2+9x的值?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一個被抹去x軸、y軸及原點(diǎn)O的網(wǎng)格圖,網(wǎng)格中每個小正方形的邊長均為1個單位長度,三角形ABC的各頂點(diǎn)都在網(wǎng)格的格點(diǎn)上,若記點(diǎn)A的坐標(biāo)為(﹣1,3),點(diǎn)C的坐標(biāo)為(1,﹣1).
(1)請?jiān)趫D中找出x軸、y軸及原點(diǎn)O的位置;
(2)把△ABC向下平移2個單位長度,再向右平移3個單位長度,請你畫出平移后的△A1B1C1 , 若△ABC內(nèi)部一點(diǎn)P的坐標(biāo)為(a,b),則點(diǎn)P的對應(yīng)點(diǎn)P1的坐標(biāo)是;
(3)試求出△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=2,∠BAD=60°,過點(diǎn)D作DE⊥AB于點(diǎn)E,DF⊥BC于點(diǎn)F.
(1)如圖1,連接AC分別交DE、DF于點(diǎn)M、N,求證:MN=AC;
(2)如圖2,將△EDF以點(diǎn)D為旋轉(zhuǎn)中心旋轉(zhuǎn),其兩邊DE′、DF′分別與直線AB、BC相交于點(diǎn)G、P,連接GP,當(dāng)△DGP的面積等于時,求旋轉(zhuǎn)角的大小并指明旋轉(zhuǎn)方向.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知矩形OABC中,OA=3,AB=6,以O(shè)A,OC所在的直線為坐標(biāo)軸,建立如圖1的平面直角坐標(biāo)系.將矩形OABC繞點(diǎn)O順時針方向旋轉(zhuǎn),得到矩形ODEF,當(dāng)點(diǎn)B在直線DE上時,設(shè)直線DE和x軸交于點(diǎn)P,與y軸交于點(diǎn)Q.
(1)求證:△BCQ≌△ODQ;
(2)求點(diǎn)P的坐標(biāo);
(3)若將矩形OABC向右平移(圖2),得到矩形ABCG,設(shè)矩形ABCG與矩形ODEF重疊部分的面積為S,OG=x,請直接寫出x≤3時,S與x之間的函數(shù)關(guān)系式,并且寫出自變量x的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com