【題目】三角形的三邊分別為2、x、5,則整數(shù)x = __________.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+bx+c與一直線相交于A(﹣1,0),C(2,3)兩點(diǎn),與y軸交于點(diǎn)N.其頂點(diǎn)為D.
(1)拋物線及直線AC的函數(shù)關(guān)系式;
(2)設(shè)點(diǎn)M(3,m),求使MN+MD的值最小時m的值;
(3)若拋物線的對稱軸與直線AC相交于點(diǎn)B,E為直線AC上的任意一點(diǎn),過點(diǎn)E作EF∥BD交拋物線于點(diǎn)F,以B,D,E,F(xiàn)為頂點(diǎn)的四邊形能否為平行四邊形?若能,求點(diǎn)E的坐標(biāo);若不能,請說明理由;
(4)若P是拋物線上位于直線AC上方的一個動點(diǎn),求△APC的面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知⊙O的直徑AB垂直于弦CD于點(diǎn)E,過C點(diǎn)作CG∥AD交AB的延長線于點(diǎn)G,連接CO并延長交AD于點(diǎn)F,且CF⊥AD.
(1)試問:CG是⊙O的切線嗎?說明理由;
(2)請證明:E是OB的中點(diǎn);
(3)若AB=8,求CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成下面推理過程:
如圖,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下:
∵∠1=∠2(已知),
且∠1=∠CGD( ),
∴∠2=∠CGD(等量代換).
∴CE∥BF( ).
∴∠ =∠C( ).
又∵∠B=∠C(已知),
∴∠ =∠B(等量代換).
∴AB∥CD( ).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法錯誤的是( )
A. ﹣2的相反數(shù)是2 B. 3﹢(﹣3)﹦0
C. (﹣3)﹣(﹣5)=2 D. ﹣11,0,4這三個數(shù)中最小的數(shù)是0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中正確的是
A. 等腰三角形一腰的長至少要大于底邊長的一半
B. 三角形按邊的關(guān)系分為不等邊三角形、等邊三角形
C. 長度為5、6、10的三條線段不能組成三角形
D. 等腰三角形的兩邊長是1和2,則其周長為4或5
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com