【題目】在平面直角坐標(biāo)系中,已知點(diǎn),,直線與軸和軸分別交于點(diǎn),,若拋物線與直線有兩個(gè)不同的交點(diǎn),其中一個(gè)交點(diǎn)在線段上(包含,兩個(gè)端點(diǎn)),另一個(gè)交點(diǎn)在線段上(包含,兩個(gè)端點(diǎn)),則的取值范圍是
A. B. 或C. D. 或
【答案】C
【解析】
根據(jù)待定系數(shù)法求出直線AB解析式,求出點(diǎn)M,N的坐標(biāo),根據(jù)一次函數(shù)以及二次函數(shù)的增減性,要使拋物線與直線有兩個(gè)不同的交點(diǎn),其中一個(gè)交點(diǎn)在線段上(包含,兩個(gè)端點(diǎn)),另一個(gè)交點(diǎn)在線段上(包含,兩個(gè)端點(diǎn))成立,則需①、②、③ 、④同時(shí)成立,解不等式組即可.
設(shè)直線AB的解析式為,由題意得
解得
直線AB的解析式為,當(dāng)時(shí),;當(dāng)時(shí),.
在中,當(dāng)時(shí),.
中, ,中,拋物線開口向上,
要使拋物線與直線AB有兩個(gè)不同的交點(diǎn),其中一個(gè)交點(diǎn)在線段AN上(包含A,N兩個(gè)端點(diǎn)),另一個(gè)交點(diǎn)在線段BM上(包含B,M兩個(gè)端點(diǎn)),需
①、②、③ 、④同時(shí)成立.
解①得,;②成立;解③得;解④得.
綜上,.
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,拋物線與軸交點(diǎn)坐標(biāo)為,
(1)如圖1,已知頂點(diǎn)坐標(biāo)為或點(diǎn),選擇適當(dāng)方法求拋物線的解析式;
(2)如圖2,在(1)的條件下,在拋物線的對(duì)稱軸上求作一點(diǎn),使的周長(zhǎng)最小,并求出點(diǎn)的坐標(biāo);
(3)如圖3,在(1)的條件下,將圖2中的對(duì)稱軸向左移動(dòng),交軸于點(diǎn),與拋物線,線段的交點(diǎn)分別為點(diǎn)、,用含的代數(shù)式表示線段的長(zhǎng)度,并求出當(dāng)為何值時(shí),線段最長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)在上,點(diǎn)是外一點(diǎn).切于點(diǎn).連接交于點(diǎn),作于點(diǎn),交于點(diǎn),連接.
(1)求證:是的切線;
(2)若,,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線過點(diǎn),頂點(diǎn)為M,與x軸交于AB兩點(diǎn),D為AB的中點(diǎn),軸,交拋物線于點(diǎn)E,下列結(jié)論中正確的是( )
A.拋物線的對(duì)稱軸是直線x=-3B.
C.D.四邊形ADEC是菱形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲經(jīng)銷商庫(kù)存有1200套A品牌服裝,每套進(jìn)價(jià)400元,售價(jià)500元,一年內(nèi)可賣完.現(xiàn)市場(chǎng)流行B品牌服裝,每套進(jìn)價(jià)300元,售價(jià)600元,但一年內(nèi)只允許經(jīng)銷商一次性訂購(gòu)B品牌服裝,一年內(nèi)B品牌服裝銷售無積壓,因甲經(jīng)銷商無流動(dòng)資金可用,只有低價(jià)轉(zhuǎn)讓A品牌服裝,轉(zhuǎn)讓來的資金全部用于購(gòu)進(jìn)B品牌服裝,并銷售。經(jīng)與乙經(jīng)銷商協(xié)商,甲、乙雙方達(dá)成轉(zhuǎn)讓協(xié)議,轉(zhuǎn)讓價(jià)格y(元/套)與轉(zhuǎn)讓數(shù)量x(套)之間的函數(shù)關(guān)系式為(),若甲經(jīng)銷商轉(zhuǎn)讓x套A品牌服裝,一年內(nèi)所獲總利潤(rùn)為W(元).
(1)求轉(zhuǎn)讓后剩余的A品牌服裝的銷售款(元)與x(套)之間的函數(shù)關(guān)系式;
(2)求B品牌服裝的銷售款(元)與x(套)之間的函數(shù)關(guān)系式;
(3)求W(元)與x(套)之間的函數(shù)關(guān)系式,當(dāng)轉(zhuǎn)讓多少套時(shí),所獲總利潤(rùn)W最大?最大值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,△ABC和△DEC均為等腰三角形,且∠ACB=∠DCE=90°,連接BE,AD,兩條線段所在的直線交于點(diǎn)P.
(1)線段BE與AD有何數(shù)量關(guān)系和位置關(guān)系,請(qǐng)說明理由.
(2)若已知BC=12,DC=5,△DEC繞點(diǎn)C順時(shí)針旋轉(zhuǎn),
①如圖2,當(dāng)點(diǎn)D恰好落在BC的延長(zhǎng)線上時(shí),求AP的長(zhǎng);
②在旋轉(zhuǎn)一周的過程中,設(shè)△PAB的面積為S,求S的最值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,對(duì)稱軸為直線x=﹣1,經(jīng)過點(diǎn)(0,1)有以下結(jié)論:①a+b+c<0;②b2﹣4ac>0;③abc>0;④4a﹣2b+c>0;⑤c﹣a>1.其中所有正確結(jié)論的序號(hào)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)課外興趣活動(dòng)小組準(zhǔn)備圍建一個(gè)矩形苗圃園,其中一邊靠墻,另外三邊用周長(zhǎng)為米的籬笆圍成.已知墻長(zhǎng)米(如圖所示),設(shè)這個(gè)苗圃園垂直于墻的一邊長(zhǎng)為米.
(1)若苗圃園的面積為平方米,求的值;
(2)若平行于墻的一邊長(zhǎng)不小于米,這個(gè)苗圃園的面積有最大值嗎?如果有,求出最大值;如果沒有,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,,,,分別交直線、于點(diǎn)、.
(1)如圖1,當(dāng)時(shí),求證:;
(2)如圖2,當(dāng)時(shí),線段、、之間有何數(shù)量關(guān)系,證明你的結(jié)論;
(3)如圖3,當(dāng)時(shí),旋轉(zhuǎn),問線段之間、、有何數(shù)量關(guān)系?證明你的結(jié)論.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com