【題目】如圖,已知⊙O的半徑OA的長為2,點B是⊙O上的動點,以AB為半徑的⊙A與線段OB相交于點C,AC的延長線與⊙O相交于點D.設線段AB的長為x,線段OC的長為y.
(1)求y關于x的函數(shù)解析式,并寫出定義域;
(2)當四邊形ABDO是梯形時,求線段OC的長.
【答案】(1),定義域為;(2)OC的長為或
【解析】試題分析:由相似三角形的判定定理得出△ABC∽△OAB,根據(jù)相似三角形的性質(zhì)得出BC,再由OC=OB–BC得出y關于x的函數(shù)解析式;(2)由梯形的性質(zhì)分情況討論:當OD//A B時,由相似三角形對應邊成比例得出AB的值,進而得出OC的長; ②當BD//OA時, 設∠ODA= ,由兩直線平行內(nèi)錯角相等和等邊對等角得到∠ADB=α,由同弧所對的圓周角是圓心角的一半得到∠AOB=2α,由三角形外交性質(zhì)和等邊對等角得到∠OAB=∠OBA=,由三角形內(nèi)角和定理得到∠BOA=45°,∠BOD=90°,可得BD值,由三角形相似對應邊成比例得y值,進而得到OC長.
試題解析:解:(1)在⊙O與⊙A中,∵OA=OB,AB=AC,∴∠ACB =∠ABC=∠OAB.
∴△ABC∽△OAB.
∴,∴,
∴,∵OC=OB–BC,∴y關于x的函數(shù)解析式,
定義域為.
(2)①當OD//A B時,∴,∴,
∴,∴,
∴(負值舍去).
∴AB=,這時ABOD,符合題意.
∴OC=.
②當BD//OA時,設∠ODA= ,∵BD//OA,OA=OD,∴∠BDA=∠OAD=∠ODA= ,
又∵OB=OD,∴∠BOA=∠OBD=∠ODB=.
∵AB=AC,OA=OB,∴∠OAB=∠ABC=∠ACB=∠COA+∠CAO=.
∵∠AOB+∠OAB+∠OBA=180°,∴,
∴,∠BOA=45°.
∴∠ODB=∠OBD=45°,∠BOD=90°,∴BD=. ∵BD//OA,∴.
∴,∴. .
由于BDOA, 符合題意.
∴當四邊形ABDO是梯形時,線段OC的長為或.
或:過點B作BH⊥OA,垂足為H, BH=OH=,AH=2–,
∴.
∴.
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系內(nèi),已知A(2x,3x+1).
(1)點A在x軸下方,在y軸的左側(cè),且到兩坐標軸的距離相等,求x的值;
(2)若x=1,點B在x軸上,且S△OAB=6,求點B的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABD是等腰三角形,AB=AD,將△ABD沿BD翻折得△CBD,點P是線段BD上一點,
(1)如圖1,連接PA、PC,求證:CP=AP;
(2)如圖2,連接PA,若∠BAP=90°時,作∠DPF=45°,線段PF交線段CD于F,求證:AD=AP+DF;
(3)如圖3,∠ABD=30°,連接AP并延長交CD于M,若∠BAM=90°,在BD上取一點Q,且DQ=3BQ,連BM、CQ,當BM= 時,求CQ的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A市氣象站測得臺風中心在A市正東方向300千米的B處,以10 千米/時的速度向北偏西60°的BF方向移動,距臺風中心200千米范圍內(nèi)是受臺風影響的區(qū)域.
(1)A市是否會受到臺風的影響?寫出你的結(jié)論并給予說明;
(2)如果A市受這次臺風影響,那么受臺風影響的時間有多長?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在等邊三角形ABC中,點E在AB上,點D在CB的延長線上,且AE=BD,
(1)當點E為AB的中點時,如圖1,求證:EC=ED;
(2)當點E不是AB的中點時,如圖2,過點E作EF∥BC,求證:△AEF是等邊三角形;
(3)在第(2)小題的條件下,EC與ED還相等嗎,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A的橫坐標為﹣1,點B在x軸的負半軸上,AB=AO,∠ABO=30°,直線MN經(jīng)過原點O,點A關于直線MN的對稱點A1在x軸的正半軸上,點B關于直線MN的對稱點為B1 , 則∠AOM的度數(shù)為;點B1的縱坐標為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com