【題目】某廠為新型號電視機上市舉辦促銷活動,顧客每買一臺該型號電視機,可獲得一次抽獎機會,該廠擬按10%設大獎,其余90%為小獎。廣家設計的抽獎方案是:在一個不透明的盒子中,放入10個黃球和90個白球,這些球除顏色外都相同,攪勻后從中任意摸出1個球,摸到黃球的顧客獲得大獎,摸到白球的顧客獲得小獎。
(1)廠家請教了一位數學老師,他設計的抽獎方案是:在一個不透明的盒子中,放入2個黃球和3個白球,這些球除顏色外都相同,攪勻后從中任意摸出2個球,摸到的2個球都是黃球的顧客獲得大獎,其余的顧客獲得小獎。該抽獎方案符合廠家的設獎要求嗎?請說明理由;
(2)下圖是一個可以自由轉動的轉盤,請你將轉盤分為2個扇形區(qū)域,分別涂上黃、白兩種顏色,并設計抽獎方案,使其符合廠家的設獎要求。(友情提醒:1.轉盤上用文字注明顏色和扇形的圓心角的度數;2.結合轉盤簡述獲獎方式,不需說明理由.)
【答案】(1)大獎的概率為10%,獲得小獎的概率為90%;(2)見解析(本題答案不唯一);
【解析】
(1)解:該抽獎方案符合廠家的設獎要求:
分別用黃1、黃2、白1、白2、白3表示這5個球,從中任意摸出2個球,可能出現的結果有:
(黃1,黃2)、(黃1,白1)、(黃1,白2)、(黃1,白3)、
(黃2,黃1)、(黃2,白1)、(黃2,白2)、(黃2,白3)、
(白1,黃1)、(白1,黃2)、(白1,白2)、(白1,白3)、
(白2,黃1)、(白2,黃2)、(白2,白1)、(白2,白3)、
(白3,黃1)、(白3,黃2)、(白3,白1)、(白3,白2)
共有20種,它們出現的可能性相同.
所有的結果中,滿足摸到的2個球都是黃球(記為事件A)的結果有2種,即(黃1,黃2)或(黃2,黃1),所以P(兩黃球)= = ,即顧客獲得大獎的概率為10%,獲得小獎的概率為90%
(2)解:本題答案不唯一,下列解法供參考.
如圖,
將轉盤中圓心角為36°的扇形區(qū)域涂上黃色,其余的區(qū)域涂上白色,顧客每購買一臺該型號電視機,可獲得一次轉動轉盤的機會,任意轉動這個轉盤,當轉盤停止時,指針指向黃色區(qū)域獲得大獎,指向白色區(qū)域獲得小獎.
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線y=x2+bx+c經過△ABC的三個頂點,其中點A(0,1),點B(﹣9,10),AC∥x軸,點P時直線AC下方拋物線上的動點.
(1)求拋物線的解析式;(2)過點P且與y軸平行的直線l與直線AB、AC分別交于點E、F,當四邊形AECP的面積最大時,求點P的坐標;
(3)當點P為拋物線的頂點時,在直線AC上是否存在點Q,使得以C、P、Q為頂點的三角形與△ABC相似,若存在,求出點Q的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)如圖1,在Rt△ABC 中, ,D、E是斜邊BC上兩動點,且∠DAE=45°,將△繞點逆時針旋轉90后,得到△,連接.
(1)試說明:△≌△;
(2)當BE=3,CE=9時,求∠BCF的度數和DE的長;
(3)如圖2,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,D是斜邊BC所在直線上一點,BD=3,BC=8,求DE2的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校為更好地開展“傳統(tǒng)文化進校園”活動,隨機抽查了部分學生,了解他們最喜愛的傳統(tǒng)文化項目類型(分為書法、圍棋、戲劇、國畫共4類),并將統(tǒng)計結果繪制成如圖不完整的頻數分布表及頻數分布直方圖.
最喜愛的傳統(tǒng)文化項目類型頻數分布表
根據以上信息完成下列問題:
(1)直接寫出頻數分布表中a的值;
(2)補全頻數分布直方圖;
(3)若全校共有學生1500名,估計該校最喜愛圍棋的學生大約有多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,拋物線C1:y=- x2+mx+m+
(1)①當m=1時,拋物線與x軸的交點坐標為_______;②當m=2時,拋物線與x軸的交點坐標為________;
(2)①無論m取何值,拋物線經過定點P________;②隨著m的取值的變化,頂點M(x,y)隨之變化,y是x的函數,記為函數C2 , 則函數C2的關系式為:________;
(3)如圖,若拋物線C1與x軸僅有一個公共點時,①直接寫出此時拋物線C1的函數關系式;②請在圖中畫出頂點M滿足的函數C2的大致圖象,在x軸上任取一點C,過點C作平行于y軸的直線l分別交C1、C2于點A、B,若△PAB為等腰直角三角形,求點C的坐標;
(4)二次函數的圖象C2與y軸交于點N,連接PN,若二次函數的圖象C1與線段PN有兩個交點,直接寫出m的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了保護環(huán)境,某開發(fā)區(qū)綜合治理指揮部決定購買A、B兩種型號的污水處理設備共10臺(注:要求同時有兩種型號),買2臺A型設備和3臺B型設備共需要90萬元,其中A型設備單價是B型設備單價的1.5倍;經預算,指揮部購買污水處理設備經費不超過180萬元,請解答下列問題
(1)A型設備和B型設備的單價各是多少萬元?
(2)指揮部有哪幾種購買方案?
(3)若A型設備月處理污水量200噸、B型設各月處理污水量180噸,現要求月處理污水量不低于1840噸,設購買設備需要總費用為y萬元,A型設備x臺,請寫出y與x的函數解析式,并根據函數性質選擇更省錢的購買方案?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校為了預測本校九年級男生畢業(yè)體育測試達標情況,隨機抽取該年級部分男生進行一次測試(滿分50分,成績均記為整數分),并按測試成績m(單位:分)分類:A類(45<m≤50),B類(40<m≤45),C類(35<m≤40),D類(m≤35)繪制出如圖所示的不完整條形統(tǒng)計圖,請根據圖中信息解答下列問題:
(1)a= ,b= ,c= ;
成績等級 | 人數 | 所占百分比 |
A類(45 | 10 | 20% |
B類 | 22 | 44% |
C類 | a | b |
D類 | c |
(2)補全條形統(tǒng)計圖;
(3)若該校九年級男生有600名,D類為測試成績不達標,請估計該校九年級男生畢業(yè)體育測試成績能達標的有多少名?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,學校附近有一條筆直的公路l,其間設有區(qū)間測速,所有車輛限速40千米/小時.數學實踐活動小組設計了如下活動:在l上確定A,B兩點,并在AB路段進行區(qū)間測速在l外取一點P,作PC⊥1,垂足為點C.測得PC=30米,∠APC=71°,∠BPC=35°,測得一汽車從點A到點B用時6秒,請你用所學的數學知識說明該車是否超速?(參考數據:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,sin71°≈0.95,cos71°≈0.33,tan71°≈2.90)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com