【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,其對稱軸是x=﹣1,且過點(﹣3,0),下列說法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),( ,y2)是拋物線上兩點,則y1<y2 , 其中說法正確的是( )
A.①②
B.②③
C.①②④
D.②③④
【答案】A
【解析】解:∵拋物線開口向上,
∴a>0,
∵拋物線對稱軸為直線x=﹣ =﹣1,
∴b=2a>0,則2a﹣b=0,所以②正確;
∵拋物線與y軸的交點在x軸下方,
∴c<0,
∴abc<0,所以①正確;
∵x=2時,y>0,
∴4a+2b+c>0,所以③錯誤;
∵點(﹣5,y1)離對稱軸要比點( ,y2)離對稱軸要遠(yuǎn),
∴y1>y2 , 所以④錯誤.
故選A.
【考點精析】利用二次函數(shù)圖象以及系數(shù)a、b、c的關(guān)系對題目進(jìn)行判斷即可得到答案,需要熟知二次函數(shù)y=ax2+bx+c中,a、b、c的含義:a表示開口方向:a>0時,拋物線開口向上; a<0時,拋物線開口向下b與對稱軸有關(guān):對稱軸為x=-b/2a;c表示拋物線與y軸的交點坐標(biāo):(0,c).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD邊長為2,E為CD的中點,以點A為中心,把△ADE順時針旋轉(zhuǎn)90°得△ABF,連接EF,則EF的長等于 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=(x﹣1)2+n與x軸交于A,B兩點(A在B的左側(cè)),與y軸交于點C(0,﹣3),點D與點C關(guān)于拋物線的對稱軸對稱.
(1)求拋物線的解析式及點D的坐標(biāo);
(2)點P是拋物線對稱軸上的一動點,當(dāng)△PAC的周長最小時,求出點P的坐標(biāo);
(3)點Q在x軸上,且∠ADQ=∠DAC,請直接寫出點Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知x1、x2是一元二次方程2x2﹣2x+1﹣3m=0的兩個實數(shù)根,且x1、x2滿足不等式x1x2+2(x1+x2)>0,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將長方形ABCD對折,得折痕PQ,展開后再沿MN翻折,使點C恰好落在折痕PQ上的點C′處,點D落在D′處,其中M是BC的中點且MN與折痕PQ交于F.連接AC′,BC′,則圖中共有等腰三角形的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=22.5°,斜邊AB的垂直平分線交AC于點D,點F在AC上,點E在BC的延長線上,CE=CF,連接BF,DE.線段DE和BF在數(shù)量和位置上有什么關(guān)系?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,△ABC的三個頂點坐標(biāo)分別為A(﹣2,1),B(﹣4,5),C(﹣5,2).
(1)①畫出△ABC關(guān)于y軸對稱的△A1B1C1;
②畫出△ABC關(guān)于原點O成中心對稱的△A2B2C2;
(2)求△A2B2C2的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,正方形的頂點的坐標(biāo)為,點在軸正半軸上,點在第三象限的雙曲線上,過點作軸交雙曲線于點,連接,則的面積為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠CAB交CD于F,CH⊥EF于H,連接DH,求證:
(1)EH=FH;
(2)∠CAB=2∠CDH.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com