【題目】如圖,把一張長(zhǎng)方形紙片ABCD折疊起來(lái),使其對(duì)角頂點(diǎn)A與C重合,D與G重合,若長(zhǎng)方形的長(zhǎng)BC為8,寬AB為4,求:

(1)DE的長(zhǎng);

(2)求陰影部分GED的面積.

【答案】(1)3;(2)

【解析】試題分析:(1設(shè)DE=EG=x,則AE=8﹣xRt△AEG中,由勾股定理得:AG2+EG2=AE2,解方程可求出DE的長(zhǎng);

2)過(guò)G點(diǎn)作GMADM,根據(jù)三角形面積不變性,得到AG×GE=AE×GM,求出GM的長(zhǎng),根據(jù)三角形面積公式計(jì)算即可.

試題解析:解:(1)設(shè)DE=EG=x,則AE=8﹣x

Rt△AEG中,AG2+EG2=AE2,∴16+x2=8﹣x2,解得x=3,DE=3

2)過(guò)G點(diǎn)作GMADM,則AG×GE=AE×GM,AG=AB=4,AE=CF=5,GE=DE=3,GM=SGED=GM×DE=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示.在△ABC中,AB=AC,點(diǎn)DBC上一點(diǎn),DEACAB于點(diǎn)E,DFABAC于點(diǎn)F,則四邊形AEDF的周長(zhǎng)等于這個(gè)三角形的(  )

A.周長(zhǎng)B.周長(zhǎng)的一半

C.兩腰長(zhǎng)和的一半D.兩腰長(zhǎng)的和

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題:如圖(1),點(diǎn)EF分別在正方形ABCD的邊BC、CD上,∠EAF=45°,試判斷BE、EF、FD之間的數(shù)量關(guān)系.

【發(fā)現(xiàn)證明】小聰把ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°ADG,從而發(fā)現(xiàn)EF=BE+FD,請(qǐng)你利用圖(1)證明上述結(jié)論.

【類比引申】如圖(2),四邊形ABCD中,∠BAD≠90°,AB=AD,B+D=180°,點(diǎn)E、F分別在邊BC、CD上,則當(dāng)∠EAF與∠BAD滿足  關(guān)系時(shí),仍有EF=BE+FD;請(qǐng)證明你的結(jié)論.

【探究應(yīng)用】如圖(3),在某公園的同一水平面上,四條通道圍成四邊形ABCD.已知AB=AD=80米,∠B=60°,ADC=120°BAD=150°,道路BC、CD上分別有景點(diǎn)E、F,且AEADDF=401米,現(xiàn)要在E、F之間修一條筆直道路,求這條道路EF的長(zhǎng).(結(jié)果取整數(shù),參考數(shù)據(jù): =1.41, =1.73

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形紙片ABCD中,AB=6,BC=10,點(diǎn)ECD上,將BCE沿BE折疊,點(diǎn)C恰落在邊AD上的點(diǎn)F處;點(diǎn)GAF上,將ABG沿BG折疊,點(diǎn)A恰落在線段BF上的點(diǎn)H處,有下列結(jié)論:

①∠EBG=45°;DEF∽△ABG;SABG=SFGHAG+DF=FG.

其中正確的是__.(把所有正確結(jié)論的序號(hào)都選上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,在矩形ABCD中,AB=8,AD=4.點(diǎn)P從點(diǎn)A出發(fā),沿A→D→C→D運(yùn)動(dòng),速度為每秒2個(gè)單位長(zhǎng)度;點(diǎn)Q從點(diǎn)A出發(fā)向點(diǎn)B運(yùn)動(dòng),速度為每秒1個(gè)單位長(zhǎng)度.P、Q兩點(diǎn)同時(shí)出發(fā),點(diǎn)Q運(yùn)動(dòng)到點(diǎn)B時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng),設(shè)點(diǎn)Q的運(yùn)動(dòng)時(shí)間為t(秒).連結(jié)PQ、AC、CP、CQ.

(1)點(diǎn)P到點(diǎn)C時(shí),t=   ;當(dāng)點(diǎn)Q到終點(diǎn)時(shí),PC的長(zhǎng)度為   

(2)用含t的代數(shù)式表示PD的長(zhǎng);

(3)當(dāng)三角形CPQ的面積為9時(shí),求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,△ABC為等邊三角形,點(diǎn)D為直線BC上一動(dòng)點(diǎn)(點(diǎn)D不與B、C重合).以AD為邊作菱形ADEF,使∠DAF=60°,連接CF.

(1)如圖1,當(dāng)點(diǎn)D在邊BC上時(shí),

求證:∠ADB=∠AFC;②請(qǐng)直接判斷結(jié)論∠AFC=∠ACB+∠DAC是否成立;

(2)如圖2,當(dāng)點(diǎn)D在邊BC的延長(zhǎng)線上時(shí),其他條件不變,結(jié)論∠AFC=∠ACB+∠DAC是否成立?請(qǐng)寫出∠AFC、∠ACB、∠DAC之間存在的數(shù)量關(guān)系,并寫出證明過(guò)程;

(3)如圖3,當(dāng)點(diǎn)D在邊CB的延長(zhǎng)線上時(shí),且點(diǎn)A、F分別在直線BC的異側(cè),其他條件不變,請(qǐng)補(bǔ)全圖形,并直接寫出∠AFC、∠ACB、∠DAC之間存在的等量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】探究與發(fā)現(xiàn):如圖1所示的圖形,像我們常見的學(xué)習(xí)用品--圓規(guī).我們不妨把這樣圖形叫做規(guī)形圖,

1)觀察規(guī)形圖,試探究∠BDC與∠A、∠B、∠C之間的關(guān)系,并說(shuō)明理由;

2)請(qǐng)你直接利用以上結(jié)論,解決以下三個(gè)問(wèn)題:

①如圖2,把一塊三角尺XYZ放置在△ABC上,使三角尺的兩條直角邊XY、XZ恰好經(jīng)過(guò)點(diǎn)B、C,∠A=40°,則∠ABX+ACX等于多少度;

②如圖3,DC平分∠ADB,EC平分∠AEB,若∠DAE=40°,∠DBE=130°,求∠DCE的度數(shù);

③如圖4,∠ABD,∠ACD10等分線相交于點(diǎn)G1G2、G9,若∠BDC=133°,∠BG1C=70°,求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,AB=4,BC=3,連接AC,P和⊙Q分別是△ABC和△ADC的內(nèi)切圓,則PQ的長(zhǎng)是( )

A. B. 2 C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】足球運(yùn)動(dòng)員將足球沿與地面成一定角度的方向踢出,足球飛行的路線是一條拋物線,不考慮空氣阻力,足球距離地面的高度(單位:)與足球被踢出后經(jīng)過(guò)的時(shí)間(單位:)之間的關(guān)系如下表:

0

1

2

3

4

5

6

7

0

8

14

18

20

20

18

14

下列結(jié)論:足球距離地面的最大高度為;足球飛行路線的對(duì)稱軸是直線;足球被踢出時(shí)落地;足球被踢出時(shí),距離地面的高度是.

其中正確結(jié)論的個(gè)數(shù)是(

A.1 B.2 C.3 D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案