【題目】(1)如圖矩形的對角線、交于點,過點作,且,連接,判斷四邊形的形狀并說明理由.
(2)如果題目中的矩形變?yōu)榱庑,結論應變?yōu)槭裁?說明理由.
(3)如果題目中的矩形變?yōu)檎叫,結論又應變?yōu)槭裁矗空f明理由.
【答案】(1)四邊形的形狀是菱形,理由見解析;(2)四邊形的形狀是矩形,理由見解析;(3)四邊形的形狀是正方形,理由見解析.
【解析】
(1)根據(jù)矩形的性質證得,再由有一組對邊平行且相等的四邊形是平行四邊形證得四邊形CODP是平行四邊形,根據(jù)有一組鄰邊相等的平行四邊形為菱形即可證得結論;(2)根據(jù)菱形的性質可得∠DOC=90°,再由有一組對邊平行且相等的四邊形是平行四邊形證得四邊形CODP是平行四邊形,根據(jù)有一個角為直角的平行四邊形為矩形即可證得結論;(3)根據(jù)正方形的性質可得OD=OC,∠DOC=90°,再由有一組對邊平行且相等的四邊形是平行四邊形得出四邊形CODP是平行四邊形,根據(jù)正方形的判定即可證得結論.
(1)四邊形的形狀是菱形,
理由是:∵四邊形是矩形,
∴,,,
∴,
∵,,
∴四邊形是平行四邊形,
∵,
∴平行四邊形是菱形;
(2)四邊形的形狀是矩形,
理由是:∵四邊形是菱形,
∴,
∴,
∵,,
∴四邊形是平行四邊形,
∵,
∴平行四邊形是矩形;
(3)四邊形的形狀是正方形,
理由是:∵四邊形是正方形,
∴,,,,
∴,,
∵,,
∴四邊形是平行四邊形,
∵,
∴平行四邊形是正方形.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠AOB=30°,點P為∠AOB內(nèi)一點,OP=8.點M、N分別在OA、OB上.當△PMN周長最小時,下列結論:①∠MPN等于120°;②∠MPN等于100°;③△PMN周長最小值為4;④△PMN周長最小值為8,其中正確的是( 。
A.①③B.②③C.①④D.②④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,,點、分別在、上,連接,、的平分線交于點,、的平分線交于點.
求證:四邊形是矩形.
小明在完成的證明后繼續(xù)進行了探索,過點作,分別交、于點、,過點作,分別交、于點、,得到四邊形.此時,他猜想四邊形是菱形.請在下列框圖中補全他的證明思路.
小明的證明思路:由,,易證,四邊形是平行四邊形.要證□是菱形,只要證.由已知條件________,,可證,故只要證,即證,易證________,________,故只要證,易證,,________,故得,即可得證.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=AC,∠A=36°AB的中垂線DE交AC于D,交AB于E,下述結論:(1)BD平分∠ABC;(2)AD=BD=BC;(3)△BCD的周長等于AB+BC;(4)D是AC中點其中正確的命題序號是_________________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如果一個正整數(shù)能表示為兩個連續(xù)偶數(shù)的平方差,那么稱這個正整數(shù)為“神秘數(shù)”.
如:,,,因此,,這三個數(shù)都是神秘數(shù).
(1)是神秘數(shù)嗎?為什么?
(2)設兩個連續(xù)偶數(shù)為和(其中取非負整數(shù)),由這兩個連續(xù)偶數(shù)構造的神秘數(shù)是的倍數(shù)嗎?為什么?
(3)①若長方形相鄰兩邊長為兩個連續(xù)偶數(shù),試說明其周長一定為神秘數(shù).
②在①的條件下,面積是否為神秘數(shù)?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB=AD,AB⊥BC,AD⊥DC,垂足分別為B、D;
(1)求證:△ABC≌△ADC
(2)連接BD交AC于點E,求證:BE=DE.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學校后勤人員到文具店給八年級學生購買考試專用文具包,該文具店規(guī)定一次性購買400個以上,可享受八折優(yōu)惠.若按八年級學生實際人數(shù)每人購買一個,不能享受八折優(yōu)惠,需付款1936元;若再多買88個就可享受八折優(yōu)惠,并且同樣只需付款1936元求該校八年級學生的總人數(shù)和文具包的價格.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】探究:如圖①,在四邊形中,,,于點.若,求四邊形的面積.
應用:如圖②,在四邊形中,,,于點.若,,,則四邊形的面積為________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com