【題目】工人師傅童威準(zhǔn)備在一塊長為60,寬為48的長方形花圃內(nèi)修建四條寬度相等,且與各邊垂直的小路.四條小路圍成的中間部分恰好是一個(gè)正方形,且邊長是小路寬度的8倍.若四條小路所占面積為160.設(shè)小路的寬度為x,依題意列方程,化為一般形式為_________

【答案】16x2+108x-160=0

【解析】

設(shè)小路的寬度為x米,則小正方形的邊長為8x米,根據(jù)小路的橫向總長度(60+8x)米和縱向總長度(48+8x)米,結(jié)合矩形的面積公式得到:(60+8x+48+8xx=160.進(jìn)行整理即可.

設(shè)小路的寬度為x米,則小正方形的邊長為8x米,

依題意得:(60+8x+48+8xx=160

整理得:16x2+108x-160=0

故答案為:16x2+108x-160=0

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在AOB中,ABO=90°,OB=4,AB=8,反比例函數(shù)y=在第一象限內(nèi)的圖象分別交OA,AB于點(diǎn)C和點(diǎn)D,且BOD的面積SBOD=4.

(1)求反比例函數(shù)解析式;

(2)求點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,對角線AC為⊙O的直徑,過點(diǎn)C作AC的垂線交AD的延長線于點(diǎn)E,點(diǎn)F為CE的中點(diǎn),連接DB,DC,DF.

1求∠CDE的度數(shù);

2求證:DF是⊙O的切線;

3若AC=2DE,求tan∠ABD的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,⊙Ox軸于A、B兩點(diǎn),直線FAx軸于點(diǎn)A,點(diǎn)DFA上,且DO平行于⊙O的弦MB,連接DM并延長交x軸于點(diǎn)C

1)判斷直線DC與⊙O的位置關(guān)系,并給出證明;

2)設(shè)點(diǎn)D的坐標(biāo)為(2,4),試求經(jīng)過D、O、C三點(diǎn)的拋物線的解析式.

3)若坐標(biāo)平面內(nèi)的點(diǎn)P,使得以點(diǎn)P和三點(diǎn)D、O、C為頂點(diǎn)的四邊形是平行四邊形,求P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AC是對角線,∠ABC=∠CDA90°,BCCD,延長BCAD的延長線于點(diǎn)E

1)求證:ABAD

2)若AEBE+DE,求∠BAC的值;

3)過點(diǎn)EMEAB,交AC的延長線于點(diǎn)M,過點(diǎn)MMPDC,交DC的延長線于點(diǎn)P,連接PB.設(shè)PBa,點(diǎn)O是直線AE上的動點(diǎn),當(dāng)MO+PO的值最小時(shí),點(diǎn)O與點(diǎn)E是否可能重合?若可能,請說明理由并求此時(shí)MO+PO的值(用含a的式子表示);若不可能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直線為常數(shù))與雙曲線為常數(shù))相交于、兩點(diǎn).

1)若點(diǎn)的橫坐標(biāo)為3,點(diǎn)的縱坐標(biāo)為.直接寫出:________,_______,的解集為_______

2)若雙曲線為常數(shù))的圖象上有點(diǎn),當(dāng)時(shí),比較的大小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】初一(1)班針對你最喜愛的課外活動項(xiàng)目對全班學(xué)生進(jìn)行調(diào)查(每名學(xué)生分別選一個(gè)活動項(xiàng)目),并根據(jù)調(diào)查結(jié)果列出統(tǒng)計(jì)表,繪制成扇形統(tǒng)計(jì)圖.

根據(jù)以上信息解決下列問題:

(1) ,

(2)扇形統(tǒng)計(jì)圖中機(jī)器人項(xiàng)目所對應(yīng)扇形的圓心角度數(shù)為 ;

(3)從選航模項(xiàng)目的名學(xué)生中隨機(jī)選取名學(xué)生參加學(xué)校航模興趣小組訓(xùn)練,請用列舉法(畫樹狀圖或列表)求所選取的名學(xué)生中恰好有名男生、名女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校九年級數(shù)學(xué)興趣小組的學(xué)生進(jìn)行社會實(shí)踐活動時(shí),想利用所學(xué)的解直角三角形的知識測量教學(xué)樓的高度,他們先在點(diǎn)D處用測角儀測得樓頂M的仰角為30°,再沿DF方向前行40米到達(dá)點(diǎn)E處,在點(diǎn)E處測得樓頂M的仰角為45°,已知測角儀的高AD1.5米,請根據(jù)他們的測量數(shù)據(jù)求此樓MF的高(結(jié)果精確到0.1m,參考數(shù)據(jù):,,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系x0y中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)(m≠0)的圖象交于二、四象限內(nèi)的A、B兩點(diǎn),與x軸交于C點(diǎn),點(diǎn)B的坐標(biāo)為(6,n).線段OA=5,Ex軸上一點(diǎn),且sinAOE=

1)求該反比例函數(shù)和一次函數(shù)的解析式;

2)求△AOC的面積.

查看答案和解析>>

同步練習(xí)冊答案