【題目】如圖,在坐標系中放置一菱形OABC , 已知∠ABC=60°,OA=1.先將菱形OABC沿x軸的正方向無滑動翻轉(zhuǎn),每次翻轉(zhuǎn)60°,連續(xù)翻轉(zhuǎn)2015次,點B的落點依次為B1 , B2 , B3 , …,則B2015的坐標為 .
【答案】(1342.5,)
【解析】解:連接AC,如圖所示.
∵四邊形OABC是菱形,
∴OA=AB=BC=OC.
∵∠ABC=60°,
∴△ABC是等邊三角形.
∴AC=AB.
∴AC=OA.
∵OA=1,
∴AC=1.
畫出第5次、第6次、第7次翻轉(zhuǎn)后的圖形,如圖所示.
由圖可知:每翻轉(zhuǎn)6次,圖形向右平移4.
∵2015=335×6+5,
∴點B5向右平移1340(即335×4)到點B2015 .
∵B5的坐標為(2.5,),
∴B2015的坐標為(2.5+1340,),
∴B2015的坐標為(1342.5,).
故答案為:(1342.5,).
從點Bn的旋轉(zhuǎn)規(guī)律去找,點Bn橫坐標變化的規(guī)律以及縱坐標的規(guī)律.
科目:初中數(shù)學 來源: 題型:
【題目】下列各組中的四條線段成比例的是( )
A.1cm、2cm、20cm、30cm
B.1cm、2cm、3cm、4cm
C.5cm、10cm、10cm、20cm
D.4cm、2cm、1cm、3cm
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在每個小正方形的邊長為1的網(wǎng)格中,A,E為格點,B,F為小正方形邊的中點,C為AE,BF的延長線的交點.
(1)AE的長等于________;
(2)若點P在線段AC上,點Q在線段BC上,且滿足AP = PQ = QB,請在如圖所示的網(wǎng)格中,用無刻度的直尺,畫出線段PQ,并簡要說明點P,Q的位置是如何找到的(不要求證明)________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(滿分14分)現(xiàn)有正方形ABCD和一個以O為直角頂點的三角板,移動三角板,使三角板的兩直角邊所在直線分別與直線BC,CD交于點M,N.
(1)如圖1,若點O與點A重合,則OM與ON的數(shù)量關系是__________________;
(2)如圖2,若點O在正方形的中心(即兩對角線的交點),則(1)中的結(jié)論是否仍然成立?請說明理由;
(3)如圖3,若點O在正方形的內(nèi)部(含邊界),當OM=ON時,請?zhí)骄奎cO在移動過程中可形成什么圖形?
(4)如圖4是點O在正方形外部的一種情況.當OM=ON時,請你就“點O的位置在各種情況下(含外部)移動所形成的圖形”提出一個正確的結(jié)論.(不必說理)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形OABC中,點B的坐標是(4,4),點E、F分別在邊BC、BA上,OE=2 ,若∠EOF=45°,則F點的縱坐標是 ( )
A.
B.1
C.
D.
-1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC , D為邊BC上一點,以AB、BD為鄰邊作平行四邊形ABDE , 連接AD、EC . 若BD=CD , 求證:四邊形ADCE是矩形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】希望中學計劃從榮威公司買A、B兩種型號的小黑板,經(jīng)洽談,購買一塊A型小黑板比購買一塊B型小黑板多用20元,且購買5塊A型小黑板和購買4塊B型小黑板共需820元.
(1)求購買一塊A型小黑板,一塊B型小黑板各需要多少元?
(2)根據(jù)希望中學實際情況,需從榮威公司買A , B兩種型號的小黑板共60塊,要求購買A、B兩種型號的小黑板的總費用不超過5240元,并且購買A型小黑板的數(shù)量應大于購買A、B兩種型號的小黑板總數(shù)量的 ,請你通過計算,求出希望中學從榮威公司買A、B兩種型號的小黑板有哪幾種方案?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小王購買了一套經(jīng)濟適用房,他準備將地面鋪上地磚,地面結(jié)構如圖所示.根據(jù)圖中的數(shù)據(jù)(單位:m),解答下列問題:
(1)用含x的代數(shù)式表示廚房的面積m2 , 臥室的面積m2 .
(2)設此經(jīng)濟適用房的總面積為y m2 , 請你用含x的代數(shù)式表示y.
(3)已知廚房面積比衛(wèi)生間面積多3m2 , 且鋪1m2地磚的平均費用為80元,那么鋪地磚的總費用為多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com