【題目】如圖,已知一條直線過點(diǎn),且與拋物線交于,兩點(diǎn),其中點(diǎn)的橫坐標(biāo)是.
求這條直線的函數(shù)關(guān)系式及點(diǎn)的坐標(biāo).
在軸上是否存在點(diǎn),使得是直角三角形?若存在,求出點(diǎn)的坐標(biāo),若不存在,請說明理由.
過線段上一點(diǎn),作軸,交拋物線于點(diǎn),點(diǎn)在第一象限,點(diǎn),當(dāng)點(diǎn)的橫坐標(biāo)為何值時,的長度最大?最大值是多少?
【答案】(1) 直線,B(8,16);(2)存在,或,理由見解析;(3)當(dāng)的橫坐標(biāo)為時,的長度的最大值是
【解析】
(1)首先求得點(diǎn)A的坐標(biāo),然后利用待定系數(shù)法確定直線的解析式,從而求得直線與拋物線的交點(diǎn)坐標(biāo);
(2)如圖1,過點(diǎn)B作BG∥x軸,過點(diǎn)A作AG∥y軸,交點(diǎn)為G,然后分若∠BAC=90°,則AB2+AC2=BC2;若∠ACB=90°,則AB2=AC2+BC2;若∠ABC=90°,則AB2+BC2=AC2三種情況求得m的值,從而確定點(diǎn)C的坐標(biāo);
(3)設(shè)M(a,a2),如圖2,設(shè)MP與y軸交于點(diǎn)Q,首先在Rt△MQN中,由勾股定理得MN=a2+1,然后根據(jù)點(diǎn)P與點(diǎn)M縱坐標(biāo)相同得到x=,從而得到MN+3PM=-a2+3a+9,確定二次函數(shù)的最值即可.
解:∵點(diǎn)是直線與拋物線的交點(diǎn),且橫坐標(biāo)為,
∴,點(diǎn)的坐標(biāo)為,
設(shè)直線的函數(shù)關(guān)系式為,
將,代入得,
解得,
∴直線,
∵直線與拋物線相交,
∴,
解得:或,
當(dāng)時,,
∴點(diǎn)的坐標(biāo)為;
如圖,過點(diǎn)作軸,過點(diǎn)作軸,交點(diǎn)為,
∴,
∵由,可求得.
設(shè)點(diǎn),同理可得,
,
①若,則,即,
解得:;
②若,則,即,
解得:或;
③若,則,即,
解得:;
∴點(diǎn)的坐標(biāo)為,,,設(shè),如圖,設(shè)與軸交于點(diǎn),
在中,由勾股定理得,
又∵點(diǎn)與點(diǎn)縱坐標(biāo)相同,
∴,
∴,
∴點(diǎn)的縱坐標(biāo)為,
∴,
∴,
∴當(dāng),
又∵,
∴取到最小值,
∴當(dāng)的橫坐標(biāo)為時,的長度的最大值是.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AD是BC邊上的高,AE、BF分別是∠BAC、∠ABC的平分線,∠BAC=50°,∠ABC=60°,則∠EAD+∠ACD=( 。
A. 75° B. 80° C. 85° D. 90°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠MON=30°,點(diǎn)A、A、A、A…在射線ON上,點(diǎn)B、B、B…在射線OM上,△ABA、△ABA、△ABA…均為等邊三角形,若OA=1,則△ABA的邊長為( )
A.64B.32C.16D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若,是一元二次方程的兩根,則有,,由上式可知,一元二次方程的兩根和、兩根積是由方程的系數(shù)確定的,我們把這個關(guān)系稱為一元二次方程根與系數(shù)的關(guān)系.若,是方程的兩根,記,,…,,
________;________;________;________;(直接寫出結(jié)果)
當(dāng)為不小于的整數(shù)時,由猜想,,有何關(guān)系?
利用中猜想求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在寬20米,長32米的矩形耕地上,修筑同樣寬的三條路(兩條縱向,一條橫向,并且橫向與縱向互相垂直),把這塊耕地分成大小相等的六塊試驗(yàn)田,要使試驗(yàn)田的面積是570平方米,問道路應(yīng)該多寬?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正方形,點(diǎn)為射線上的一點(diǎn)(不和點(diǎn)、重合),過作,且,過作交射線于.若的面積與四邊形的面積之比為,則________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P是AOB內(nèi)任意一點(diǎn),OP=10cm,點(diǎn)P與點(diǎn)關(guān)于射線OA對稱,點(diǎn)P與點(diǎn)關(guān)于射線OB對稱,連接交OA于點(diǎn)C,交OB于點(diǎn)D,當(dāng)△PCD的周長是10cm時,∠AOB的度數(shù)是______度。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某旅行社為吸引市民組團(tuán)去天水灣風(fēng)景區(qū)旅游,推出如下收費(fèi)標(biāo)準(zhǔn):
如果人數(shù)不超過人,人均旅游費(fèi)用為元;
如果人數(shù)超過人,每增加人,人均旅游費(fèi)用降低元,但人均旅游費(fèi)用不得低于元.
某單位共付給該旅行社旅游費(fèi)用元,問:該單位這次共有多少員工去天水灣風(fēng)景區(qū)旅游?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com