【題目】如圖中是拋物線形拱橋,P處有一照明燈,水面OA寬4m,從O、A兩處觀測P處,仰角分別為α、β,且tanα=,tanβ=,以O為原點,OA所在直線為x軸建立直角坐標(biāo)系.若水面上升1m,水面寬為( )
A. B. C. D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知線段,,點是的中點,點是的中點.
(1)若,求線段的長度.
(2)當(dāng)線段在線段上從左向右或從右向左運動時,試判斷線段的長度是否發(fā)生變化,如果不變,請求出線段的長度;如果變化,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在每個小正方形邊長為1的網(wǎng)格中,點A,B,C均在格點上.
(Ⅰ)AC的長度等于_____;
(Ⅱ)在圖中有一點P,若連接AP,PB,PC,滿足AP平分∠A,且PC=PB,請在如圖所示的網(wǎng)格中,用無刻度的直尺,畫出點P,并簡要說明點P的位置是如何找到的(不要求證明)_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料,并回答問題
鐘表中蘊含著有趣的數(shù)學(xué)運算,不用負(fù)數(shù)也可以作減法,例如現(xiàn)在是10點鐘,4小時以后是幾點鐘?雖然,但在表盤上看到的是2點鐘.如果用符號“⊕”表示鐘表上的加法,則.若問2點鐘之前4小時是幾點鐘,就得到鐘表上的減法概念,,用符號“”表示鐘表上的減法.(注:我們用0點鐘代替12點鐘)由上述材料可知:
(1)______,______;
(2)在有理數(shù)運算中,相加得零的兩個數(shù)互為相反數(shù),如果在鐘表運算中沿用這個概念,則5的相反數(shù)是______,舉例說明有理數(shù)減法法則:減去一個數(shù)等于加上這個數(shù)的相反數(shù),在鐘表運算中是否仍然成立;
(3)規(guī)定在鐘表運算中也有,對于鐘表上的任意數(shù)字,,,若,判斷是否一定成立,若一定成立,說明理由;若不一定成立,寫出一組反例,并結(jié)合反例加以說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:△ABC,△BDE為等邊三角形,C、B、D三點共線。
求證:(1)AD=EC;
(2)BP=BQ;
(3)△BPQ為等邊三角形。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),已知菱形的邊長為,點在軸負(fù)半軸上,點在坐標(biāo)原點,點的坐標(biāo)為(,),拋物線頂點在邊上,并經(jīng)過邊的中點.
(1)求這條拋物線的函數(shù)解析式;
(2)點關(guān)于直線的對稱點是,求點到點的最短距離;
(3)如圖(2)將菱形以每秒個單位長度的速度沿軸正方向勻速平移,過點作于點,交拋物線于點,連接、.設(shè)菱形平移的時間為秒(),問是否存在這樣的,使與相似?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一副三角板的兩個銳角頂點重合,,,,分別是,的平分線.
(1)如圖①所示,當(dāng)與重合時,則的大小為______.
(2)當(dāng)繞著點旋轉(zhuǎn)至如圖②所示,當(dāng),則的大小為多少?
(3)當(dāng)繞著點旋轉(zhuǎn)至如圖③所示,當(dāng)時,求的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點在數(shù)軸上對應(yīng)的數(shù)為,點對應(yīng)的數(shù)為,且G為線段上一點,兩點分別從點沿方向同時運動,設(shè)點的運動速度為點的運動速度為,運動時間為.
(1)點對應(yīng)的數(shù)為 ,點對應(yīng)的數(shù)為 ;
(2)若,試求為多少時,兩點的距離為;
(3)若,點為數(shù)軸上任意一點,且,請直接寫出的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com