【題目】如圖,已知線段,,點是的中點,點是的中點.
(1)若,求線段的長度.
(2)當(dāng)線段在線段上從左向右或從右向左運動時,試判斷線段的長度是否發(fā)生變化,如果不變,請求出線段的長度;如果變化,請說明理由.
【答案】(1)6cm;(2)線段的長度不發(fā)生變化,理由詳見解析.
【解析】
(1)依據(jù)AB=10cm,CD=2cm,AC=3cm,可得DB=5cm,再根據(jù)E、F分別是AC、BD的中點,即可得到CE=AC=1.5cm,DF=DB=2.5m,進(jìn)而得出EF=1.5+2+2.5=6cm;
(2)依據(jù)E、F分別是AC、BD的中點,可得EC=AC,DF=DB,再根據(jù)EF=EC+CD+DF進(jìn)行計算,即可得到EF==6cm;
(1)因為,,
所以.
因為點是的中點,點是的中點,
所以,.
所以.
(2)線段的長度不發(fā)生變化.
因為點是的中點,點是的中點,
所以,.
所以
.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列等式:
,
將以上二個等式兩邊分別相加得:
用你發(fā)現(xiàn)的規(guī)律解答下列總是:
(1)直接寫出下列各式的計算結(jié)果:
①_______________________
②______________________
(2)仿照題中的計算形式,猜想并寫出:___________________________
(3)解方程:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O與邊BC交于點D,DE⊥AC,垂足為E,交AB的延長線于點F.
(1)求證:EF是⊙O的切線;
(2)若∠C=60°,AC=12,求的長.
(3)若tanC=2,AE=8,求BF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】倡導(dǎo)健康生活,推進(jìn)全民健身,某社區(qū)要購進(jìn)A,B兩種型號的健身器材若干套,A,B兩種型號健身器材的購買單價分別為每套310元,460元,且每種型號健身器材必須整套購買.
(1)若購買A,B兩種型號的健身器材共50套,且恰好支出20000元,求A,B兩種型號健身器材各購買多少套?
(2)若購買A,B兩種型號的健身器材共50套,且支出不超過18000元,求A種型號健身器材至少要購買多少套?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某出租車駕駛員從公司出發(fā),在南北向的人民路上連續(xù)接送5批客人,行駛路程記錄如下(規(guī)定向南為正,向北為負(fù),單位:):
第1批 | 第2批 | 第3批 | 第4批 | 第5批 |
(1)接送完第5批客人時,該駕駛員在公司什么方向,距離公司多遠(yuǎn)?
(2)若該出租車的收費標(biāo)準(zhǔn)為:行駛路程不超過,收費10元;超過,對超過部分另加收每千米1.8元.當(dāng)送完第5批客人時,該駕駛員共收到車費多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個桌球游戲的長方形桌面中,,現(xiàn)將球從邊上的點處發(fā)射,依次與邊觸碰并反彈后第一次回到邊上的點處,設(shè)觸碰點依次為,當(dāng),,,,時,等于________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算下列各題:
(1)(﹣3)﹣(﹣5)﹣(+7)
(2)﹣8×+14÷(﹣7)
(3)×(﹣30)
(4)﹣24+(1-)×|3﹣(﹣3)2|
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某服裝廠每天生產(chǎn)、兩種品牌的服裝共600件,、兩種品牌的服裝每件的成本和利潤如右表:
A | B | |
成本(元/件) | 50 | 35 |
利潤(元/件) | 20 | 15 |
設(shè)每天生產(chǎn)種品牌服裝件,每天兩種服裝獲利元.
(1)請寫出關(guān)于的函數(shù)關(guān)系式;
(2)如果服裝廠每天至少投入成本26400元,那么每天至少獲利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖中是拋物線形拱橋,P處有一照明燈,水面OA寬4m,從O、A兩處觀測P處,仰角分別為α、β,且tanα=,tanβ=,以O為原點,OA所在直線為x軸建立直角坐標(biāo)系.若水面上升1m,水面寬為( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com