【題目】在平面直角坐標系中,直線y=kx+x+1過一定點A,坐標系中有點B(2,0)和點C,要使以A、O、B、C為頂點的四邊形為平行四邊形,則點C的坐標為
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面文字:
對于(﹣5)+(﹣9)+17 +(﹣3)
可以如下計算:
原式=[(﹣5)+(﹣)]+[(﹣9)+(﹣)]+(17+)+[(﹣3)+(﹣)]
=[(一5)+(﹣9)+17+(一3)]+[(﹣)+(﹣)++(﹣)]=0+(﹣1)
=﹣1
上面這種方法叫拆項法,你看懂了嗎?
仿照上面的方法,請你計算:(﹣1)+(﹣2000)+4000+(﹣1999)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次中學(xué)生田徑運動會上,根據(jù)參加男子跳高初賽的運動員的成績(單位:m),繪制出如下的統(tǒng)計圖①和圖②,請根據(jù)相關(guān)信息,解答下列問題:
(Ⅰ)圖1中a的值為 ;
(Ⅱ)求統(tǒng)計的這組初賽成績數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);
(Ⅲ)根據(jù)這組初賽成績,由高到低確定9人進入復(fù)賽,請直接寫出初賽成績?yōu)?.65m的運動員能否進入復(fù)賽.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】長春市地鐵1號線,北起北環(huán)站,南至紅咀子站,共設(shè)15個地下車站,2017年6月30日開通運營,標志著吉林省正式邁進“地鐵時代”,15個站點如圖所示.
某天,王紅從人民廣場站開始乘坐地鐵,在地鐵各站點做志愿者服務(wù),到A站下車時,本次志愿者服務(wù)活動結(jié)束,約定向紅咀子站方向為正,當天的乘車記錄如下(單位:站):+5,﹣2,﹣6,+8,+3,﹣4,﹣9,+8
(1)請通過計算說明A站是哪一站?
(2)相鄰兩站之間的距離為1.3千米,求這次王紅志愿服務(wù)期間乘坐地鐵行進的路程是多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P為⊙O的直徑BA延長線上的一點,PC與⊙O相切,切點為C,點D是⊙上一點,連接PD.已知PC=PD=BC.下列結(jié)論:
(1)PD與⊙O相切;(2)四邊形PCBD是菱形;(3)PO=AB;(4)∠PDB=120°.
其中正確的個數(shù)為( )
A.4個 B.3個 C.2個 D.1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在菱形ABCD中,AB=4,∠BAD=120,△ABF為等邊三角形;點E.F分別在菱形的邊BC.CD上滑動,且點E.F不與點B.C.D重合,當點E.F分別在BC.CD上滑動時,求四邊形ABCF的面積= ___________并求△CEF面積的最大值___________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系xOy中,圖形W在坐標軸上的投影長度定義如下:
設(shè)點P,Q是圖形W上的任意兩點.若的最大值為m,則圖形W在x軸上的投影長度=m;若的最大值為n,則圖形W在y軸上的投影長度=n,如下圖,圖形W在x軸上的投影長度==2;在y軸上的投影長度==4.
(1)已知點A(3,3),B(4,1).如圖1所示,若圖形W為△OAB,則=___________ =___________
(2)已知點C(4,0),點D在直線y=-2x+6上,若圖形W為△OCD.當=時,求點D的坐標.
(3)如圖2所示,已知點A(3,0),B(0,4),將△BOA繞點A按順時針方向旋轉(zhuǎn)得△CDA,連接OD,BD.若圖形W為點O.A.C.D.B圍成的多邊形圖象,且∠DOA=∠OBA,直接寫出的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過點A(-3,0),對稱軸為直線x=-1,給出以下結(jié)論:①abc<0;②b2-4ac>0;③4b+c<0;④若B(-,y1),C(-,y2)為函數(shù)圖象上的兩點,則y1>y2;⑤當-3≤x≤1時,y≥0,其中正確的結(jié)論是______.(填序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線與軸交于A(4,0),B(6,0)兩點,與軸交于點C(0,3).
(1)求拋物線的解析式;
(2)點P從點O出發(fā),以每秒2個單位長度的速度向點B運動,同時點E也從點O出發(fā),以每秒1個單位長度的速度向點C運動,設(shè)點P的運動時間為t秒(0<t<3).
①過點E作x軸的平行線,與BC相交于點D(如圖所示),當t為何值時,△PDE的面積最大,并求出這個最大值;
②當t =2時,拋物線的對稱軸上是否存在點F,使△EFP為直角三角形?若存在,請你求出點F的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com