【題目】在平面直角坐標(biāo)系xOy中拋物線(xiàn)y=﹣x2+bx+c經(jīng)過(guò)點(diǎn)A、B、C,已知A(﹣1,0),C(0,3).
(1)求拋物線(xiàn)的表達(dá)式;
(2)如圖1,P為線(xiàn)段BC上一點(diǎn),過(guò)點(diǎn)P作y軸平行線(xiàn),交拋物線(xiàn)于點(diǎn)D,當(dāng)△BCD的面積最大時(shí),求點(diǎn)P的坐標(biāo);
(3)如圖2,拋物線(xiàn)頂點(diǎn)為E,EF⊥x軸于F點(diǎn),N是線(xiàn)段EF上一動(dòng)點(diǎn),M(m,0)是x軸上一動(dòng)點(diǎn),若∠MNC=90°,直接寫(xiě)出實(shí)數(shù)m的取值范圍.
【答案】(1)拋物線(xiàn)解析式為y=﹣x2+2x+3;
(2)當(dāng)a=時(shí),△BDC的面積最大,此時(shí)P(,);
(3)m的取值范圍為:﹣≤m≤5.
【解析】
(1)由y=﹣x2+bx+c經(jīng)過(guò)點(diǎn)A、B、C,A(﹣1,0),C(0,3),利用待定系數(shù)法即可求得此拋物線(xiàn)的解析式;
(2)首先令﹣x2+2x+3=0,求得點(diǎn)B的坐標(biāo),然后設(shè)直線(xiàn)BC的解析式為y=kx+b′,由待定系數(shù)法即可求得直線(xiàn)BC的解析式,再設(shè)P(a,3﹣a),即可得D(a,﹣a2+2a+3),即可求得PD的長(zhǎng),由S△BDC=S△PDC+S△PDB,即可得S△BDC=﹣(a﹣)2+,利用二次函數(shù)的性質(zhì),即可求得當(dāng)△BDC的面積最大時(shí),求點(diǎn)P的坐標(biāo);
(3)直角三角形斜邊上的中線(xiàn)等于斜邊的一半列出關(guān)系式m=(n﹣)2﹣,然后根據(jù)n的取值得到最小值.
解:(1)由題意得:,
解得:,
∴拋物線(xiàn)解析式為y=﹣x2+2x+3;
(2)令﹣x2+2x+3=0,
∴x1=﹣1,x2=3,
即B(3,0),
設(shè)直線(xiàn)BC的解析式為y=kx+b′,
∴,
解得:,
∴直線(xiàn)BC的解析式為y=﹣x+3,
設(shè)P(a,3﹣a),則D(a,﹣a2+2a+3),
∴PD=(﹣a2+2a+3)﹣(3﹣a)=﹣a2+3a,
∴S△BDC=S△PDC+S△PDB
=PDa+PD(3﹣a)
=PD3
=(﹣a2+3a)
=﹣(a﹣)2+,
∴當(dāng)a=時(shí),△BDC的面積最大,此時(shí)P(,);
(3)由(1),y=﹣x2+2x+3=﹣(x﹣1)2+4,
∴E(1,4),
設(shè)N(1,n),則0≤n≤4,
取CM的中點(diǎn)Q(,),
∵∠MNC=90°,
∴NQ=CM,
∴4NQ2=CM2,
∵NQ2=(1﹣)2+(n﹣)2,
∴4[(1﹣)2+(n﹣)2]=m2+9,
整理得,m=n2﹣3n+1,即m=(n﹣)2﹣,
∵0≤n≤4,
當(dāng)n=上,M最小值=﹣,n=4時(shí),M最小值=5,
綜上,m的取值范圍為:﹣≤m≤5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】撫順某中學(xué)為了解八年級(jí)學(xué)生的體能狀況,從八年級(jí)學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行體能測(cè)試,測(cè)試結(jié)果分為A,B,C,D四個(gè)等級(jí).請(qǐng)根據(jù)兩幅統(tǒng)計(jì)圖中的信息回答下列問(wèn)題:
(1)本次抽樣調(diào)查共抽取了多少名學(xué)生?
(2)求測(cè)試結(jié)果為C等級(jí)的學(xué)生數(shù),并補(bǔ)全條形圖;
(3)若該中學(xué)八年級(jí)共有700名學(xué)生,請(qǐng)你估計(jì)該中學(xué)八年級(jí)學(xué)生中體能測(cè)試結(jié)果為D等級(jí)的學(xué)生有多少名?
(4)若從體能為A等級(jí)的2名男生2名女生中隨機(jī)的抽取2名學(xué)生,做為該校培養(yǎng)運(yùn)動(dòng)員的重點(diǎn)對(duì)象,請(qǐng)用列表法或畫(huà)樹(shù)狀圖的方法求所抽取的兩人恰好都是男生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某風(fēng)景區(qū)內(nèi)的公路如圖1所示,景區(qū)內(nèi)有免費(fèi)的班車(chē),從入口處出發(fā),沿該公路開(kāi)往草甸,途中停靠塔林(上下車(chē)時(shí)間忽略不計(jì)).第一班車(chē)上午8點(diǎn)發(fā)車(chē),以后每隔10分鐘有一班車(chē)從入口處發(fā)車(chē).小聰周末到該風(fēng)景區(qū)游玩,上午7:40到達(dá)入口處,因還沒(méi)到班車(chē)發(fā)車(chē)時(shí)間,于是從景區(qū)入口處出發(fā),沿該公路步行25分鐘后到達(dá)塔林.離入口處的路程(米)與時(shí)間(分)的函數(shù)關(guān)系如圖2所示.
(1)求第一班車(chē)離入口處的路程(米)與時(shí)間(分)的函數(shù)表達(dá)式.
(2)求第一班車(chē)從人口處到達(dá)塔林所蓄的時(shí)間.
(3)小聰在塔林游玩40分鐘后,想坐班車(chē)到草甸,則小聘聰最早能夠坐上第幾班車(chē)?如果他坐這班車(chē)到草甸,比他在塔林游玩結(jié)束后立即步行到草甸提早了幾分鐘?(假設(shè)每一班車(chē)速度均相同,小聰步行速度不變)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某書(shū)店同時(shí)購(gòu)進(jìn)九年級(jí)數(shù)學(xué),語(yǔ)文兩種輔導(dǎo)書(shū)共冊(cè),其進(jìn)價(jià)和售價(jià)如下表所示:
數(shù)學(xué) | 語(yǔ)文 | |
進(jìn)價(jià)(元/冊(cè)) | ||
售價(jià)(元/冊(cè)) |
設(shè)購(gòu)進(jìn)語(yǔ)文輔導(dǎo)書(shū)冊(cè).
已知當(dāng)該書(shū)店購(gòu)進(jìn)數(shù)學(xué)輔導(dǎo)書(shū)的數(shù)量是語(yǔ)文輔導(dǎo)書(shū)的倍時(shí),恰好用去元,求的值.
若設(shè)該書(shū)店售完這冊(cè)輔導(dǎo)書(shū)的總利潤(rùn)為元.
①求與之間的函數(shù)關(guān)系式;
②該書(shū)店計(jì)劃最多投入元用于購(gòu)買(mǎi)這兩種輔導(dǎo)書(shū),則至少要購(gòu)進(jìn)多少冊(cè)語(yǔ)文輔導(dǎo)書(shū)?書(shū)店可獲得的最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC,AB=AC=10,BC=16.
(1)作△ABC的外接圓O(用圓規(guī)和直尺作圖,不寫(xiě)作法,但要保留作圖痕跡)
(2)求OA的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AC=6,BC=8,AB=10,以點(diǎn)C為圓心,4為半徑作圓.點(diǎn)D是⊙C上的一個(gè)動(dòng)點(diǎn),連接AD、BD,則AD+BD的最小值為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校為了豐富學(xué)生課余生活,開(kāi)展了“第二課堂”的活動(dòng),推出了以下四種選修課程:A.繪畫(huà);B.唱歌;C.演講;D.十字繡.學(xué)校規(guī)定:每個(gè)學(xué)生都必須報(bào)名且 只能選擇其中的一個(gè)課程.學(xué)校隨機(jī)抽查了部分學(xué)生,對(duì)他們選擇的課程情況進(jìn)行了統(tǒng)計(jì), 并繪制了如下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)結(jié)合統(tǒng)計(jì)圖中的信息,解決下列問(wèn)題:
(1)這次學(xué)校抽查的學(xué)生人數(shù)是 ,C 所占圓心角為 ;
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)如果該校共有1000名學(xué)生,請(qǐng)你估計(jì)該校報(bào)D的學(xué)生約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四邊形為矩形,點(diǎn)在上(不與,重合),連接,,以為一邊作正方形,使得點(diǎn)在邊上,給出以下結(jié)論:①;②;③;④;⑤;其中正確的結(jié)論的個(gè)數(shù)是( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某校八、九年級(jí)部分學(xué)生的睡眠情況,隨機(jī)抽取了該校八、九年級(jí)部分學(xué)生進(jìn)行調(diào)查,已知抽取的八年級(jí)與九年級(jí)的學(xué)生人數(shù)相同,利用抽樣所得的數(shù)據(jù)繪制如圖的統(tǒng)計(jì)圖表:
睡眠情況分段情況如下
組別 | 睡眠時(shí)間x(小時(shí)) |
根據(jù)圖表提供的信息,回答下列問(wèn)題:
(Ⅰ)直接寫(xiě)出統(tǒng)計(jì)圖中的值 ;
(Ⅱ)睡眠時(shí)間少于6.5小時(shí)為嚴(yán)重睡眠不足,則從該校八、九年級(jí)各隨機(jī)抽一名學(xué)生,被抽到的這兩位學(xué)生睡眠嚴(yán)重不足的可能性分別有多大?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com